Skip to main content
Log in

The long-lived fertility signature of Cu–Au porphyry systems: insights from apatite and zircon at Tampakan, Philippines

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The essential sources and processes required for the formation of Cu–(Au)-porphyry deposits have been part of a long-standing debate. In this study we investigate one of the youngest and best-preserved world-class Cu–(Au)-porphyry systems in order to learn more about melt sources and what geochemical tracers in zircon and apatite might be useful to identify ore-forming intrusions within porphyry systems. Combined, in-situ Hf, O, and Nd isotope analyses in zircon and apatite imply that the Tampakan magmas were derived from depleted mantle sources. Hence, we suggest that older crustal components or metasomatized mantle are not required for the production of metallogenically fertile magmas in island arc settings. Based on the compositions of apatite and zircon, we confirm that previously established fertility-indicator signatures of these minerals are useful to identify fertile porphyry systems. Our data show that intrusions directly associated with mineralization events contain apatite with elevated Cl and S concentrations compared to pre- and post- mineralization igneous events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material (data transparency)

All data generated or analyzed during this study are included in this published article (and its supplementary files).

Code availability

Not applicable.

References

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263(1–4):1–18

    Google Scholar 

  • Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284(3–4):409–416

    Google Scholar 

  • Arató R, Audétat A (2017) Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt. Geochim Cosmochim Acta 209:284–295. https://doi.org/10.1016/j.gca.2017.04.020

    Article  Google Scholar 

  • Ballard JR (2002) Palin MJ Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Pet 144:347–364. https://doi.org/10.1007/s00410-002-0402-5

    Article  Google Scholar 

  • Bateman H (1910) Solution of a system of differential equations occurring in the theory of radioactive transformations. Proc Camb Philos Soc 15:423–427

    Google Scholar 

  • Belousova E, Griffin W, O’Reilly SY, Fisher N (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76(1):45–69

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1–2):115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003

    Article  Google Scholar 

  • Blichert-Toft J, Puchtel IS (2010) Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth Planet Sci Lett 297(3–4):598–606

    Google Scholar 

  • Boswell JT (2014) Porphyry system fertility discrimination and mineralization vectoring using igneous apatite substitutions to derive pre-exsolution melt mineralization component concentrations. The University of Utah

    Google Scholar 

  • Bourdon B, Turner S, Henderson GM, Lundstrom CC (2003) Introduction to U-series geochemistry. Rev Mineral Geochem 52(1):1–21

    Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57. https://doi.org/10.1016/j.epsl.2008.06.010

    Article  Google Scholar 

  • Bouzari F, Hart CJ, Bissig T, Barker S (2016) Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits. Econ Geol 111(6):1397–1410

    Google Scholar 

  • Cao M, Li G, Qin K, Seitmuratova EY, Liu Y (2012) Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization. Resour Geol 62(1):63–83

    Google Scholar 

  • Chambefort I, Dilles JH, Kent AJ (2008) Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology 36(9):719–722

    Google Scholar 

  • Chang J, Li JW, Audétat A (2018) Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: insights from LA-ICP-MS analysis of fluid inclusions. Geochim Cosmochim Acta 232:181–205

    Google Scholar 

  • Chelle-Michou C, Chiaradia M (2017) Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contrib Mineral Pet 172(11–12):105

    Google Scholar 

  • Chelle-Michou C, Rottier B, Caricchi L, Simpson G (2017) Tempo of magma degassing and the genesis of porphyry copper deposits. Sci Rep 7:40566

    Google Scholar 

  • Chiaradia M, Müntener O, Beate B (2011) Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of Ecuador). J Pet 52(6):1107–1141

    Google Scholar 

  • Cooke D, Wilkinson J (2014) 13.14 geochemistry of porphyry deposits. In: Treatise on geochemistry, 2nd edn, vol 1–16. Elsevier, Oxford, pp 357–381

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100(5):801–818

    Google Scholar 

  • Cooke DR, Agnew P, Hollings P, Baker M, Chang Z, Wilkinson JJ, White NC, Zhang L, Thompson J, Gemmell JB, Fox N, Chen H, Wilkinson CC (2017) Porphyry Indicator Minerals (PIMS) and Porphyry Vectoring and Fertility Tools (PVFTS) - indicators of mineralization styles and recorders of hypogene geochemical dispersion halos. Paper presented at the sixth decennial international conference on mineral exploration, 22–25 October 2017, Toronto, Ontario. http://www.dmec.ca/getattachment/376c188f-fcf7-4896-8503-1e694074a1b3/Resources/Exploration-17/Indicator-Mineral-Chemistry-as-an-Exploration-Tool.aspx

  • Dhuime B, Hawkesworth C, Cawood P (2011) When continents formed. Science 331(6014):154–155

    Google Scholar 

  • Ding T, Ma D, Lu J, Zhang R (2015) Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: implications for petrogenesis and metallogenesis. Ore Geol Rev 69:104–117

    Google Scholar 

  • Donovan JJ, Tingle TN (1996) An improved mean atomic number background correction for quantitative microanalysis. Microsc Microanal 2(1):1–7

    Google Scholar 

  • Duan D-F, Jiang S-Y (2018) Using apatite to discriminate synchronous ore-associated and barren granitoid rocks: a case study from the Edong metallogenic district, South China. Lithos 310:369–380

    Google Scholar 

  • Fiorentini ML, Garwin SL (2010) Evidence of a mantle contribution in the genesis of magmatic rocks from the Neogene Batu Hijau district in the Sunda Arc, South Western Sumbawa, Indonesia. Contrib Mineral Pet 159(6):819–837

    Google Scholar 

  • Fisher CM, McFarlane CRM, Hanchar JM, Schmitz MD, Sylvester PJ, Lam R, Longerich HP (2011) Sm–Nd isotope systematics by laser ablation-multicollector-inductively coupled plasma mass spectrometry: methods and potential natural and synthetic reference materials. Chem Geol 284(1–2):1–20

    Google Scholar 

  • Fleet ME, Pan Y (1997) Rare earth elements in apatite: Uptake from H2O-bearing phosphate-fluoride melts and the role of volatile components. Geochim Cosmochim Acta 61(22):4745–4760

    Google Scholar 

  • Frei R (1996) Sulfur in bulk rock and igneous apatite: tracing mineralized and barren trends in intrusions. Schweiz Mineral Petrogr Mitt 127:57–73

    Google Scholar 

  • Glencore (2014) GlencoreXtrate Resources & Reserves as at 31 December 2013, 72 pages. https://www.glencore.com/dam/jcr:c405afd6-4f18-40e9-b82e-d60195ba27ac/GLEN-2013-Resources-Reserves-Report.pdf. Accessed July 2021

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Mineral 97(7):1103–1115

    Google Scholar 

  • Hall R, Smyth HR (2008) Cenozoic arc processes in Indonesia: identification of the key influences on the stratigraphic record in active volcanic arcs. Geol Soc Am Sp Pap 436:27–54

    Google Scholar 

  • Hammerli J, Kemp TI (2021) Combined Hf and Nd isotope microanalysis of co-existing zircon and REE-rich accessory minerals: high resolution insights into crustal processes. Chem Geol 581:120393

    Google Scholar 

  • Hammerli J, Kemp AIS, Spandler C (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet Sci Lett 392:133–142. https://doi.org/10.1016/j.epsl.2014.02.018

    Article  Google Scholar 

  • Hammerli J, Kemp AIS, Barrett N, Wing BA, Roberts M, Arculus RJ, Boivin P, Nude PM, Rankenburg K (2017) Sulfur isotope signatures in the lower crust: a SIMS study on S-rich scapolite of granulites. Chem Geol 454:54–66. https://doi.org/10.1016/j.chemgeo.2017.02.016

    Article  Google Scholar 

  • Hammerli J, Kemp AIS, Shimura T, Vervoort JD, Dunkley DJ (2018) Generation of I-type granitic rocks by melting of heterogeneous lower crust. Geology 46(10):907–910

    Google Scholar 

  • Hellstrom J, Paton C, Woodhead J, Hergt J (2008) Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. Mineral Assoc Canada Short Course Ser 40:343–348

    Google Scholar 

  • Holwell DA, Fiorentini M, McDonald I, Lu Y, Giuliani A, Smith DJ, Keith M, Locmelis M (2019) A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat Commun 10(1):1–10

    Google Scholar 

  • Hou Z, Yang Z, Qu X, Meng X, Li Z, Beaudoin G, Rui Z, Gao Y, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36(1):25–51

    Google Scholar 

  • Hou Z, Yang Z, Lu Y, Kemp AIS, Zheng Y, Li Q, Tang J, Yang Z, Duan L (2015) A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology 43(3):247–250

    Google Scholar 

  • Janots E, Austrheim H, Spandler C, Hammerli J, Trepmann CA, Berndt J, Magnin V, Kemp AIS (2018) Rare earth elements and Sm-Nd isotope redistribution in apatite and accessory minerals in retrogressed lower crust material (Bergen Arcs, Norway). Chem Geol 484:120–135

    Google Scholar 

  • Jiang Y-H, Jiang S-Y, Ling H-F, Dai B-Z (2006) Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth Planet Sci Lett 241:617–633. https://doi.org/10.1016/j.epsl.2005.11.023

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429

    Google Scholar 

  • Kendall-Langley LA, Kemp AIS, Hawkesworth CJ, Roberts MP (2021) Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon. Contrib Mineral Petrol 176(7):1–19

    Google Scholar 

  • Kim Y, Konecke B, Fiege A, Simon A, Becker U (2017) An ab-initio study of the energetics and geometry of sulfide, sulfite, and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer. Am Min 102(8):1646–1656

    Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Parat F, Stechern A (2017) Co-variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer. Am Mineral 102(3):548–557

    Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Linsler S, Holtz F (2019) An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochim Cosmochim Acta 265:242–258

    Google Scholar 

  • Korges M, Weis P, Andersen C (2020) The role of incremental magma chamber growth on ore formation in porphyry copper systems. Earth Planet Sci Lett 552:116584

    Google Scholar 

  • Li W, Costa F (2020) A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim Cosmochim Acta 269:203–222. https://doi.org/10.1016/j.gca.2019.10.035

    Article  Google Scholar 

  • Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U-Pb age. Geostand Geoanal Res 34(2):117–134

    Google Scholar 

  • Liu Y, Comodi P (1993) Some aspects of the crystal-chemistry of apatites. Mineral Mag 57(389):709–719

    Google Scholar 

  • Loucks RR (2014) Distinctive composition of copper-ore-forming arcmagmas. Aust J Earth Sci 61(1):5–16

    Google Scholar 

  • Loucks RR, Fiorentini ML, Henríquez GJ (2020) New magmatic oxybarometer using trace elements in zircon. J Petrol 61(3):egaa034. https://doi.org/10.1093/petrology/egaa034

    Article  Google Scholar 

  • Lu YJ, Loucks RR, Fiorentini ML, McCuaig TC, Evans NJ, Yang ZM, Hou ZQ, Kirkland CL, Parra-Avila LA, Kobussen A (2016) Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. SocEcon Geol Spec Pub 19:329–347

    Google Scholar 

  • Lu Y, Smithies RH, Wingate MTD, Evans NJ, McCuaig TC, Champion D, Outhwaite M (2019) Zircon fingerprinting of magmatic–hydrothermal systems in the Archean Yilgarn Craton: Geological Survey of Western Australia, Report 197, p 22

  • Luo Y, Rakovan J, Tang Y, Lupulescu M, Hughes JM, Pan Y (2011) Crystal chemistry of Th in fluorapatite. Am Mineral 96(1):23–33

    Google Scholar 

  • Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions: a robust new tool for mineral exploration. Econ Geol 111(5):1187–1222

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Meng X, Kleinsasser JM, Richards JP, Tapster SR, Jugo PJ, Simon AC, Kontak DJ, Robb L, Bybee GM, Marsh JH, Stern RA (2021) Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga. Nat Comm 12:2189

    Google Scholar 

  • Middleton C, Buenavista A, Rohrlach B, Gonzalez J, Subang L, Moreno G (2004) A geological review of the Tampakan copper-gold deposit, Southern Mindanao, Philippines. In: Proceedings PACRIM 2004 congress, vol 19, p 22, September 2004

  • Miles AJ, Graham CM, Hawkesworth CJ, Gillespie MR, Hinton RW, Bromiley GD (2014) Apatite: a new redox proxy for silicic magmas? Geochim Cosmochim Acta 132:101–119

    Google Scholar 

  • Nandedkar RH, Hürlimann N, Ulmer P, Müntener O (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Mineral Petrol 171:71. https://doi.org/10.1007/s00410-016-1278-0

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48(1):13–49

    Google Scholar 

  • Parat F, Dungan MA, Streck MJ (2002) Anhydrite, pyrrhotite, and sulfur-rich apatite: tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CO, USA). Lithos 64(3–4):63–75

    Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal at Spectrom 26(12):2508–2518

    Google Scholar 

  • Peng G, Luhr JF, McGee JJ (1997) Factors controlling sulfur concentrations in volcanic apatite. Am Mineral 82(11–12):1210–1224

    Google Scholar 

  • Pettke T, Oberli F, Heinrich CA (2010) The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet Sci Lett 296:267–277. https://doi.org/10.1016/j.epsl.2010.05.007

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70(17):4513–4527

    Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98(8):1515–1533

    Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37(3):247–250. https://doi.org/10.1130/g25451a.1

    Article  Google Scholar 

  • Richards JP (2011a) High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Econ Geol 106(7):1075–1081

    Google Scholar 

  • Richards JP (2011b) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40(1):1–26

    Google Scholar 

  • Richards JP (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci 6(11):911

    Google Scholar 

  • Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ Geol 107(2):295–332

    Google Scholar 

  • Rohrlach BD (2002) Tectonic evolution, petrochemistry, geochronology and palaeohydrology of the Tampakan porphyry and high sulphidation epithermal Cu-Au deposit Mindanao, Phillipines. PhD Thesis, Australian National University, Canberra

  • Rohrlach BD, Loucks RR (2005) Multi-million-year cyclic ramp-up of volatiles in a lower-crustal magma reservoir trapped below the Tampakan copper–gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In: Porter TM (ed) Super porphyry copper & gold deposits—a global perspective, vol 2. PCG Publishing, Adelaide, pp 369–407

    Google Scholar 

  • Rouse RC, Dunn PJ (1982) A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites. Am Mineral 67(1–2):90–96

    Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293(5530):683–687

    Google Scholar 

  • Scherer E, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3(1):19–24. https://doi.org/10.2113/gselements.3.1.19

    Article  Google Scholar 

  • Sha L-K, Chappell BW (1999) Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim Cosmochim Acta 63(22):3861–3881

    Google Scholar 

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Deposita 44:265–283. https://doi.org/10.1007/s00126-008-0216-0

    Article  Google Scholar 

  • Shu Q, Chang Z, Lai Y, Hu X, Wu H, Zhang Y, Wang P, Zhai D, Zhang C (2019) Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China. Miner Deposita 54(5):645–656

    Google Scholar 

  • Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68(6):799–815

    Google Scholar 

  • Sillitoe RH (2002) Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Miner Deposita 37(1):4–13

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41

    Google Scholar 

  • Sillitoe RH, Mortensen JK (2010) Longevity of porphyry copper formation at Quellaveco. Peru Econ Geol 105(6):1157–1162

    Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324. https://doi.org/10.1016/S0012-821X(04)00012-3

    Article  Google Scholar 

  • Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26(6):523–526

    Google Scholar 

  • Sun S-J, Yang X-Y, Wang G-J, Sun W-D, Zhang H, Li C-Y, Ding X (2019) In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: implications for petrogenesis and metallogeny. Chem Geol 510:200–214

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168(3–4):279–281

    Google Scholar 

  • Tapster S, Condon DJ, Naden J, Noble SR, Petterson MG, Roberts NMW, Saunders AD, Smith DJ (2016) Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands. Earth Planet Sci Lett 442:206–217

    Google Scholar 

  • Tattitch B, Chelle-Michou C, Blundy J, Loucks RR (2021) Chemical feedbacks during magma degassing control chlorine partitioning and metal extraction in volcanic arcs. Nat Comm 12(1):1–11

    Google Scholar 

  • Tepper JH, Kuehner SM (1999) Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystalline trace element diffusion. Am Mineral 84(4):581–595

    Google Scholar 

  • USGS (2008) https://mrdata.usgs.gov/sir20105090z/show-sir20105090z.php?id=522. Accessed July 2021

  • Valley J, Lackey J, Cavosie A, Clechenko C, Spicuzza M, Basei M, Bindeman I, Ferreira V, Sial A, King E (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Pet 150(6):561–580

    Google Scholar 

  • van Dongen M, Weinberg RF, Tomkins AG, Armstrong RA, Woodhead JD (2010) Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid formation of the Ok Tedi porphyry Cu–Au deposit, Papua New Guinea. Lithos 114:282–292. https://doi.org/10.1016/j.lithos.2009.09.003

    Article  Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581

    Google Scholar 

  • Williams IS (1998) U-Th-Pb Geochronology by Ion Microprobe. Rev Econ Geol 7:1–35

    Google Scholar 

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195

    Google Scholar 

  • Xie F, Tang J, Lang X, Ma D (2018) The different sources and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite. Lithos 314:447–462

    Google Scholar 

  • Xu B, Griffin WL, Hou Z, Lu Y, Belousova E, Xu J, O’Reilly S (2021) Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am Mineral. https://doi.org/10.2138/am-2021-7714

    Article  Google Scholar 

  • Yang Y-H, Wu F-Y, Yang J-H, Chew DM, Xie L-W, Chu Z-Y, Zhang Y-B, Huang C (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th–Pb geochronology. Chem Geol 385:35–55

    Google Scholar 

  • Yang J-H, Kang L-F, Peng J-T, Zhong H, Gao J-F, Liu L (2018) In-situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons: implication for Jurassic granitoid-related Cu-Pb-Zn and W mineralization in the Nanling Range, South China. Ore Geol Rev 93:382–403

    Google Scholar 

  • Zhang D, Audétat A (2017) What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. Econ Geol 112(2):221–244

    Google Scholar 

  • Zhong S, Feng C, Seltmann R, Li D, Dai Z (2018) Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite). Miner Deposita 53(6):855–870

    Google Scholar 

  • Zhu J-J, Richards JP, Rees C, Creaser R, DuFrane SA, Locock A, Petrus JA, Lang J (2018) Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the red chris porphyry Cu-Au Deposit, Northern British Columbia, Canada. Econ Geol 113(5):1047–1075

    Google Scholar 

Download references

Acknowledgements

We thank the assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis (CMCA) of the University of Western Australia (UWA) a facility funded by the University, State, and Commonwealth Governments, and the ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), Macquarie University. LA-ICPMS trace element and isotope analysis at UWA was conducted with instrumentation funded by the Australian Research Council (LE100100203 and LE150100013). The authors wish to thank Noreen Evans and Brad McDonald (Curtin University) for technical assistance with laser ablation analysis of zircon. ML Fiorentini acknowledges the ARC grant schemes FT110100241 and CE110001017. We would like to thank J. Chang and an anonymous reviewer for constructive comments, which helped to improve this paper significantly. This is contribution 1962 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au). Y Lu publishes with the permission of the Executive Director of the Geological Survey of Western Australia.

Funding

The financial support for this project was provided by M.L.F through the Australia Research Council grant schemes FT110100241 and CE110001017.

Author information

Authors and Affiliations

Authors

Contributions

LAP-A and JH wrote the manuscript, performed microanalyses of zircons (LAP-A) and apatite (JH), and developed the main conceptual ideas. TK performed radiogenic isotope analyses in zircon and apatite, aided in interpreting the results, and helped to develop the analytical strategy. BR and RL provided sample material and aided in interpreting the results and helped to contextualize the data. YL performed microanalyses of zircons. ISW helped with SHRIMP analyses and performed U–Pb data reduction and helped with data interpretation. LM conducted oxygen isotope analyses and performed data reduction. MPR provided technical assistance and guidance while conducting EMPA measurements and data interpretation. MLF was involved in project conception, aided in interpreting the results and provided financial support for the project. All authors contributed to final editing and presentation.

Corresponding author

Correspondence to L. A. Parra-Avila.

Ethics declarations

Conflict of interest (include appropriate disclosures)

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval (include appropriate approvals or waivers)

Not applicable.

Consent to participate (include appropriate statements)

Not applicable.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2592 KB)

Supplementary file2 (XLSX 467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Avila, L.A., Hammerli, J., Kemp, A.I.S. et al. The long-lived fertility signature of Cu–Au porphyry systems: insights from apatite and zircon at Tampakan, Philippines. Contrib Mineral Petrol 177, 18 (2022). https://doi.org/10.1007/s00410-021-01878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01878-2

Keywords

Navigation