Skip to main content

Advertisement

Log in

Hypersaline fluids generated by high-grade metamorphism of evaporites: fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the Pan-African Lufilian belt (Western Zambian Copperbelt), uranium mineralizations, preferentially scattered in kyanite ± talc micaschists (metamorphosed evaporitic sediments) or concentrated along transposed quartz veins provide an opportunity to (1) understand the time/space relationship between the ore minerals and the deformation of the host rocks, (2) identify the different fluid events associated with specific stages of quartz deformation and (3) characterize the ore fluid geochemistry in terms of fluid origin and fluid/rock interactions. In the U occurrences studied in Lolwa and Mitukuluku (Domes region, Western Zambian Copperbelt), two mineralizing stages are described. The first generation of ore fluids (53–59 wt% CaCl2, 13–15 wt% NaCl; N2–H2 in the gas phase of fluid inclusions) circulated during the high-temperature quartz recrystallization, at 500–700 °C. This temperature is in agreement with the PT conditions recorded during the crustal thickening related to continental collision at ca. 530 Ma. LA-ICPMS analyses show the presence of uranium within this fluid, with a concentration mode around 20 ppm. The second generation of ore fluid (21–32 wt% NaCl, 19–21 wt% CaCl2; CO2–CO in the gas phase of fluid inclusions) percolated at lower temperature conditions, at the brittle–ductile transition, between 200 and 300 °C. This temperature could be related to the exhumation of the high-grade metamorphic rocks at ca. 500 Ma. The formation of H2 and CO is interpreted as the result of radiolysis in the presence of dissolved uranium in the aqueous phase of these fluid inclusions. Finally, a late fluid (14–16 wt% NaClequiv) circulated in the brittle domain but seems unrelated to U (re-)mobilization event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allan MM, Yardley BWD, Forbes LJ, Shmulovich KI, Banks DA, Shepherd TJ (2005) Validation of LA-ICPMS fluid inclusions analysis with synthetic fluid inclusions. Am Mineral 90:1767–1775

    Google Scholar 

  • Andersen T, Austrheim A, Burke EA, Elvevold S (1993) N2 and CO2 in deep crustal fluids: evidence from the Caledonides of Norway. Chem Geol 108:113–132

    Google Scholar 

  • Armstrong RA, Master S, Robb LJ (2005) Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt. J Afr Earth Sci 42:32–40

    Google Scholar 

  • Arthurs JW, Legg CA (1974) The Geology of the Solwezi Area: Explanation of Degree Sheets 1126, NW. Quarter, and 1126, Part of SW. Quarter. Government Printer

  • Audeoud D (1982) Les minéralisations uranifères et leur environnement à Kamoto, Kambove et Shinkolobwe (Shaba, Zaïre): pétrographie, géochimie et inclusions fluides. Dissertation, Université Claude Bernard-Lyon1, France

  • Bakker RJ, Diamond LW (2006) Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes. Am Miner 91:635–657

    Google Scholar 

  • Baumgartner M, Bakker RJ (2009) CaCl2-hydrate nucleation in synthetic fluid inclusions. Chem Geol 265:335–344

    Google Scholar 

  • Barker AJ, Foster RP (1993) Metamorphic fluids and mineral deposits. Miner Mag 57:363–364

    Google Scholar 

  • Baumgartner M, Bakker RJ (2010) Raman spectra of ice and salt hydrates in synthetic fluid inclusions. Chem Geol 275:58–66

    Google Scholar 

  • Bernau R, Roberts S, Richards M, Nisbet B, Boyce A, Nowecki J (2013) The geology and geochemistry of the Lumwana Cu (±Co ± U) deposits, NW Zambia. Miner Depos 48:137–153

    Google Scholar 

  • Binda PL, Van Eden JG (1972) Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite) Zambia. Paleogeogr Paleoclimatol Palaeoecol 12:151–168

    Google Scholar 

  • Bird DK, Helgeson HC (1981) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems. II. Equilibrium constraints in metamorphic/geothermal processes. Am J Sci 281:576–614

    Google Scholar 

  • Bodnar RJ (2003) Reequilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Can, Short course 32:213–230

  • Bouiller AM, France-Lanord C, Dubessy J (1991) Linked fluid and tectonic evolution in the High Himalaya mountains (Nepal). Contrib Miner Petrol 107:358–372

    Google Scholar 

  • Brems D, Muchez P, Sikazwe O, Mukumba W (2009) Metallogenesis of the Nkana copper–cobalt South Orebody, Zambia. J Afr Earth Sci 55:185–196

    Google Scholar 

  • Bull S, Selley D, Broughton D, Hitzman M, Cailteux J, Large R, McGoldrick P (2011) Sequence and carbon isotopic stratigraphy of the Neoproterozoic Roan Group strata of the Zambian copperbelt. Precambrian Res 190:70–89

    Google Scholar 

  • Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158

    Google Scholar 

  • Cahen L, Pasteels P, Ledent D, Bourguillot R, Van Wambeke L, Eberhardt P (1961) Recherche sur l’âge absolu des minéralisations uranifères du Kantaga et de Rhodésie du Nord. Ann Mus r Afr centr 41:1–53

    Google Scholar 

  • Cahen L, François A, Ledent D (1971) Sur l’âge des uraninites de Kambove Ouest et de Kamoto Principal et révision des connaissances relatives aux minéralisations uranifères du Katanga et du Copperbelt de Zambie. Ann Soc belg Géol 94:185–198

    Google Scholar 

  • Cailteux JLH (1983) Le Roan shabien dans la région de Kambove (Shaba-Zaïre): Etude sédimentologique et métallogénique. Dissertation, Université de Liège, Belgium

  • Cailteux JLH (1994) Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. J Afr Earth Sci 19:279–301

    Google Scholar 

  • Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158

    Google Scholar 

  • Cathelineau M, Boiron MC, Holliger P, Poty B (1990) Metallogenesis of the French part of the Variscan orogen. Part II: time-space relationships between U, Au and Sn-W ore deposition and geodynamic events—mineralogical and U–Pb data. Tectonophys 177:59–79

    Google Scholar 

  • Caumon MC, Dubessy J, Robert P, Tarantola A (2013) Fused-silica capillary capsules (FSCCs) as reference synthetic aqueous fluid inclusions to determine chlorinity by Raman spectroscopy. Eur J Miner 25:755–763

    Google Scholar 

  • Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y (2005) U–Pb Ages from the Neoproterozoic Doushantuo Formation, China. Sci 308:95–98

    Google Scholar 

  • Connolly JAD, Cesare B (1993) C–O–H–S fluid compositions and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11:379–388

    Google Scholar 

  • Cosi M, De Bonis A, Gosso G, Hunziker J, Martinotti G, Moratto S, Robert JP, Ruhlman F (1992) Late proterozoic thrust tectonics, high-pressure metamorphism and uranium mineralization in the Domes Area, Lufilian Arc, Northwestern Zambia. Precambrian Res 58:215–240

    Google Scholar 

  • Craw D, Norris RJ (1993) Grain-boundary migration of water and carbon-dioxide during uplift of garnet-zone Alpine Schist, New-Zealand. J Metamorph Geol 11:371–378

    Google Scholar 

  • Darnley AG, Horne JET, Smith GJ, Chandler TRD, Dance DF, Preece ER (1961) Age of some uranium and thorium minerals from east and central Africa. Miner Mag 32:716–724

    Google Scholar 

  • De Waele B, Johnson SP, Pisarevsky SA (2008) Palaeoproterozoic to neoproterozoic growth and evolution of the eastern Congo Craton: its role in the Rodinia puzzle. Precambrian Res 160:127–141

    Google Scholar 

  • Decrée S, Deloule E, De Putter T, Dewaele S, Mees F, Yans J, Marignac C (2011) SIMS U–Pb dating of uranium mineralization in the Katanga Copperbelt: constraints for the geodynamic context. Ore Geol Rev 40:81–89

    Google Scholar 

  • Dewaele S, Muchez Ph, Vets J, Fernandez-Alonzo M, Tack L (2006) Multiphase origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). J Afr Earth Sci 46:455–469

    Google Scholar 

  • Diamond LW (1990) Fluid inclusion evidence for P–V–T–X evolution of hydrothermal solutions in late-alpine gold-quartz veins at Brusson, Val d’Ayas, Northwest Italian Alps. Am J Sci 290:912–958

    Google Scholar 

  • Diamond LW (2001) Review of the systematic of CO2–H2O fluid inclusions. Lithos 55:69–99

    Google Scholar 

  • Diamond LW, Tarantola A, Stünitz H (2010) Modification of fluid inclusions in quartz by deviatoric stress. II: experimentally induced changes in inclusion volume and composition. Contrib Miner Petrol 160:845–864

    Google Scholar 

  • Drury MR, Urai JL (1990) Deformation-related recrystallisation processes. Tectonophys 172:235–253

    Google Scholar 

  • Dubessy J, Ramboz C (1996) The history of organic nitrogen from early diagenesis to amphibolite facies: mineralogical, chemical, mechanical and isotopic implications. Extended Abstracts 5th Internat. Symposium Water-Rock Interaction, Reykjavik, Iceland, pp. 170–174

  • Dubessy J, Audeoud D, Wilkins R, Kosztolanyi C (1982) The use of the Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions. Chem Geol 37:137–150

    Google Scholar 

  • Dubessy J, Pagel M, Beny JM, Christensen H, Hickel B, Kosztolanyi C, Poty B (1988) Radiolysis evidenced by H2–O2 and H2-bearing fluid inclusions in three uranium deposits. Geochim Cosmochim Acta 52:1155–1167

    Google Scholar 

  • Dubessy J, Poty B, Ramboz C (1989) Advances in C–O–H–N–S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. Eur J Miner 1:517–534

    Google Scholar 

  • Dubessy J, Lhomme T, Boiron MC, Rull F (2002) Determination of chlorinity in aqueous fluids using raman spectroscopy of the stretching band of water at room temperature: application to fluid inclusions. Appl Spectrosc 56:99–106

    Google Scholar 

  • Eglinger A, André-Mayer AS, Vanderhaeghe O, Mercadier J, Cuney M, Decrée S, Feybesse JL, Milesi JP (2013) Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle. Ore Geol Rev 54:197–213

    Google Scholar 

  • El Desouky HA, Muchez P, Dewaele S, Boutwood A, Tyler R (2008) Postorogenic Origin of the Stratiform Cu Mineralization at Lufukwe, Lufilian Foreland. Democratic Republic of Congo. Econ Geol 103:555–582

    Google Scholar 

  • El Desouky HA, Muchez P, Cailteux JLH (2009) Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geol Rev 36:315–332

    Google Scholar 

  • El Desouky HA, Muchez P, Boyce AJ, Schneider J, Cailteux JLH, Dewaele S, Von Quadt A (2010) Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo). Miner Depos 45:735–763

    Google Scholar 

  • El Desouky HA, Banks D, De Clercq F, Cailteux JLH, Muchez P (2012) Chemistry of syn-orogenic copper-cobalt ore-forming fluids in the Katanga copperbelt, Democratic Republic of Congo. Geofluids VII conference, June 2012, France

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chem Geol 109:149–175

    Google Scholar 

  • François A, Cailteux JLH (1981) La couverture Katangienne entre les socles de Zilo et de la Kabompo, République du Zaïre. Région de Kolwezi, Ann Mus r Afr centr 87

    Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20

    Google Scholar 

  • Greyling LN (2009) Fluid evolution and characterisation of mineralising solutions in the Central African Copperbelt. Dissertation, University of Witwatersrand, South-Africa

  • Greyling LN, Robb LJ, Master S, Boiron MC, Yao Y (2005) The nature of early basinal fluids in the Zambian Copperbelt: a case study from the Chambishi deposit. J Afr Earth Sci 42:159–172

    Google Scholar 

  • Günther D, Heinrich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J Anal Spectrom 14:1363–1368

    Google Scholar 

  • Hanson RE, Wilson TJ, Munyanyiwa H (1994) Geologic evolution of the neoproterozoic Zambezi orogenic belt in Zambia. J Afr Earth Sci 18:135–150

    Google Scholar 

  • Haynes FM (1985) Determination of fluid inclusion compositions by sequential freezing. Econ Geol 80:1436–1439

    Google Scholar 

  • Heijlen W, Banks DA, Muchez P, Stensgard BM, Yardley BWD (2008) The nature of mineralizing fluids of the Kipushi Zn-Cu Deposit, Katanga, Democratic Republic of Congo: quantitative fluid inclusion analysis using laser ablation ICP-MS and Bulk crush-leach methods. Econ Geol 103:1459–1482

    Google Scholar 

  • Hitzman MW, Selley D, Bull S (2010) Formation of sedimentary rock-hosted stratiform copper deposits through earth history. Econ Geol 105:627–639

    Google Scholar 

  • Hitzman MW, Broughton D, Selley D, Woodhead J, Wood D, Bull S (2012) The Central African Copperbelt: Diverse stratigraphic, structural and temporal settings the world’s largest sedimentary copper district: In: Hedenquiest JW, Harris M, Camus F (2012) Geology and genesis of major copper deposits and districts of the world. A tribute to Richard H Sillitoe Soc Econ Geol, special publication 16:487–514

  • Holloway JM, Dahlgren RA (1999) Geologic nitrogen in terrestrial biogeochemical cycling. Geol 27:567–570

    Google Scholar 

  • Hua B, Xu H, Terry J, Deng B (2006) Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems. Environ Sci Technol 40:4666–4671

    Google Scholar 

  • Jackson MPA, Warin ON, Woad GM, Hudec MR (2003) Neoproterozoic allochtonous salt tectonics during the Lufilian orogeny in the Katanga Copperbelt, central Africa. Geol Soc of Am Bull 115:314–330

    Google Scholar 

  • Jessel MW (1987) Grain-boundary migration microstructures in a naturally deformed quartzite. J Struct Geol 9:1007–1014

    Google Scholar 

  • John T (2001) Subduction and continental collision in the Lufilian Arc-Zambezi orogen: A petrological, geochemical and geochronological study of eclogites and whiteschists (Zambia). Dissertation, Christian-Albrechts-Universitat, Germany

  • John T, Schenk V, Haase K, Scherer E, Tembo F (2003) Evidence for a Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge–type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geol 31:243–246

    Google Scholar 

  • John T, Schenk V, Mezger K, Tembo F (2004) Timing and PT evolution of whiteschist metamorphism in the Lufilian Arc-Zambezi Belt orogen (Zambia): implications for the assembly of Gondwana. J Geol 112:71–90

    Google Scholar 

  • Johnson EL, Hollister LS (1995) Syndeformational fluid trapping in quartz: determining the pressure-temperature conditions of deformation from fluid inclusions and the formation of pure CO2 fluid inclusions during grain-boundary migration. J Metamorph Geol 13:239–249

    Google Scholar 

  • Johnson SP, Olivier GJH (2002) High fO2 metasomatism during the whiteschist metamorphism, Zambezi belt, Northern Zimbabwe. J Petrol 2:271–290

    Google Scholar 

  • Johnson SP, De Waele B, Evans D, Banda W, Tembo F, Milton JA, Tani K (2007) Geochronology of the Zambezi supracrustal sequence, Southern Zambia: a record of Neoproterozoic divergent processes along the Southern Margin of the Congo Craton. J Geol 115:355–374

    Google Scholar 

  • Kampunzu AB, Tembo F, Matheis G, Kapenda D, Huntsman-Mapila P (2000) Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan Basin, Central Africa: implications for Rodinia Break-up. Gondwana Res 3:125–153

    Google Scholar 

  • Kampunzu AB, Cailteux JLH, Kamona AF, Intiomale MM, Melcher F (2009) Sediment-hosted Zn–Pb–Cu deposits in the Central African Copperbelt. Ore Geol Rev 35:263–297

    Google Scholar 

  • Kerrich R (1976) Some effects of tectonic recrystallisation on fluid inclusions in vein quartz. Contrib Mineral Petrol 59:195–202

    Google Scholar 

  • Key RM, Liyungu AK, Njamu FM, Somwe V, Banda J, Mosley PN, Armstrong RA (2001) The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization. J Afr Earth Sci 33:503–528

    Google Scholar 

  • Kish L, Cuney M (1981) Uraninite-albite veins from the Mistamisk Valley of the Labrador Trough Quebec. Miner Mag 44:471–483

    Google Scholar 

  • Kribek B, Knesi I, Pasava J, Maly K, Caruthers H, Sykorova I, Jehlicka J (2005) Hydrothermal alteration of the graphitized organic matter at the Kansanshi Cu–(Au–U) deposit, Zambia. In: Mao J, Bierlein P (eds) Mineral deposit research: meeting the global challenge. Springer, Heidelberg, pp 278–280

    Google Scholar 

  • Krohn MD, Kendall C, Evans JR, Fries TL (1993) Relations of ammonium minerals at several hydrothermal systems in the western US. J Volcanol Geotherm Res 56:401–413

    Google Scholar 

  • Leisen M (2011) Analyse chimique des inclusions fluides par ablation-laser couplée à l’ICPMS et applications géochimiques. Dissertation, Université de Lorraine, France

  • Leisen M, Dubessy J, Boiron MC, Lach P (2012) Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICPMS and Pitzer thermodynamic modeling of ice melting temperature. Geochim Cosmochim Acta 90:110–125

    Google Scholar 

  • Leroy J (1979) Contribution à l’étalonnage de la pression interne des inclusions fluides lors de leur décrépitation. Bull Miner 102:584–593

    Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Google Scholar 

  • Lumpkin GR, Leung SHF, Colella M (2000) Composition, geochemical alteration, and alpha-decay damage effects of natural brannerite. Scientific Basis for Nuclear Waste Management XXIII Symposium. Mater Res Soc Symp Proc 608:359–365

    Google Scholar 

  • Maozhong M, Junqi W, Xiangyun W (1994) Effect of groundwater radiolysis on the wall-rock alteration of uranium ore deposits. Chin J Geochem 13:355–362

    Google Scholar 

  • Marjonen RK (2000) Geology of the Mufulira-Kitwe area: explanation of degree sheet 1228, part of NW quarter and SW quarter: Report of the Geological Survey of Zambia

  • Master S, Rainaud C, Armstrong RA, Phillips D, Robb LJ (2005) Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. J Afr Earth Sci 42:41–60

    Google Scholar 

  • McGowan RR, Roberts S, Foster RP, Boyce AJ, Coller D (2003) Origin of the copper-cobalt deposits of the Zambian Copperbelt: an epigenetic view from Nchanga. Geol 31:497–500

    Google Scholar 

  • Mendelsohn F (1961) The geology of the Northern Rhodesian Copperbelt. Macdonald, London

    Google Scholar 

  • Meneghel L (1981) The occurrence of uranium in the Katanga System of northwestern Zambia. Econ Geol 76:56–68

    Google Scholar 

  • Mernagh TP, Wilde AR (1989) The use of the laser Raman microprobe for the determination of salinity in fluid inclusions. Geochim Cosmochim Acta 53:765–771

    Google Scholar 

  • Muchez P, Vanderhaeghen P, Desouky H, Schneider J, Boyce A, Dewaele S, Cailteux JLH (2008) Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo). Miner Depos 43:575–589

    Google Scholar 

  • Muchez P, Brems D, Clara E, De Cleyn A, Lammens L, Boyce A, De Muynck D, Mukumba W, Sikazwe O (2010) Evolution of Cu–Co mineralizing fluids at Nkana Mine, Central African Copperbelt, Zambia. J Afr Earth Sci 58:457–474

    Google Scholar 

  • Newton RC, Manning CE (2005) Solubility of Anhydrite, CaSO4, in NaCl–H2O Solutions at high pressures and temperatures: applications to fluid–rock interaction. J Petrol 46:701–716

    Google Scholar 

  • Nijland TG, Maijer C, Senior A, Verschure RH (1993) Primary sedimentary structures and composition of the high-grade metamorphic Nidelva quartzite complex (Bamble, Norway), and the origin of nodular gneisses. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96:217–232

  • Oliver NHS, Wall VJ (1987) Metamorphic plumbing system in Proterozoic calc-silicates, Queensland, Australia. Geol 15:793–796

    Google Scholar 

  • Oliver NHS, Wall VJ, Cartwright I (1992) Internal control of fluid compositions in amphibolite-facies scapolitic calc-silicates, Mary Kathleen Australia. Contrib Miner Petrol 111:94–112

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer

  • Pattison DRM (2006) The fate of graphite in prograde metamorphism of pelites: an example from the Ballachulish aureole, Scotland. Lithos 88:85–99

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand Geoanalytical Res 21:115–144

    Google Scholar 

  • Pohl W (1992) Defining metamorphogenic mineral deposits-an introduction. Miner Petrol 45:145–152

    Google Scholar 

  • Porada H, Berhorst V (2000) Towards a new understanding of the Neoproterozoic-early palæozoic Lufilian and northern Zambezi belts in Zambia and the Democratic Republic of Congo. J Afr Earth Sci 30:727–771

    Google Scholar 

  • Pöter B, Gottschalk M, Heinrich W (2004) Experimental determination of the ammonium partitioning among muscovite, K-feldspar and aqueous chloride solutions. Lithos 74:67–90

    Google Scholar 

  • Rainaud C, Master S, Armstrong RA, Phillips D, Robb LJ (2005) Monazite U–Pb dating and 40Ar–39Ar thermochronology of metamorphic events in the Central African Copperbelt during the Pan-African Lufilian Orogeny. J Afr Earth Sci 42:183–199

    Google Scholar 

  • Ramsay CR, Davidson LR (1970) The origin of scapolite in the regionally metamorphosed rocks of Mary Kathleen, Queensland Australia. Contrib Miner Petrol 25:41–51

    Google Scholar 

  • Ramseyer K, Diamond LW, Boles JR (1993) Authigenic K-NH4-feldspar in sandstones; a fingerprint of the diagenesis of organic matter. J Sediment Res 63:1092–1099

    Google Scholar 

  • Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geol 38:323–326

    Google Scholar 

  • Ren M, Parker DF, White JC (2003) Partitioning of Sr, Ba, Rb, Y, and LREE between plagioclase and peraluminous silicic magma. Am Miner 88:1091–1103

    Google Scholar 

  • Richard A, Pettke T, Cathelineau M, Boiron MC, Mercadier J, Cuney M, Derome D (2010) Brine-rock interaction in the Athabasca basement (McArthur River U deposit, Canada): Consequences for fluid chemistry and uranium uptake. Terra Nova 22:303–308

    Google Scholar 

  • Richard A, Rozsypal C, Mercadier J, Banks DA, Cuney M, Boiron MC, Cathelineau M (2012) Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nat Geosci 5:142–146

    Google Scholar 

  • Richard A, Cauzid J, Cathelineau M, Boiron MC, Mercadier J, Cuney M (2013) Synchrotron XRF and XANES investigation of uranium speciation and element distribution in fluid inclusions from unconformity-related uranium deposits. Geofluids 13:101–111

    Google Scholar 

  • Richards JP, Krogh TE, Spooner ETC (1988) Fluid inclusion characteristics and U–Pb rutile age of late hydrothermal alteration and veining at the Musoshi stratiform copper deposit, Central Africa copper belt, Zaire. Econ Geol 83:118–139

    Google Scholar 

  • Robb LJ, Master S, Greyling L, Yao Y, Rainaud C (2002) Contributions to the geology and mineralization of the Central African Copperbelt. V. Speculations regarding the “Snowball Earth” and redox controls on stratabound Cu–Co and Pb–Zn mineralization. In: Anhaeusser CR (ed) Economic Geology Research Institute, Information Circular 362. University of the Witwatersrand

  • Roedder E (1984) Reviews in Mineralogy: Fluid inclusions. Mineral Society of America

  • Schiffries CM (1990) Liquid-absent aqueous fluid inclusions and phase equilibria in the system CaCl2–NaCl–H2O. Geochim Cosmochim Acta 54:611–619

    Google Scholar 

  • Schlegel TU, Wälle M, Steele-MacInnis M, Heinrich CA (2012) Accurate and precise quantification of major and trace element compositions of calcic–sodic fluid inclusions by combined microthermometry and LA-ICPMS analysis. Chem Geol 334:144–153

    Google Scholar 

  • Selley D, Broughton D, Scott RJ, Hitzman M, Bull SW, Large RR, McGoldrick PJ, Croaker M, Pollington N (2005) A New Look at the Geology of the Zambian Copperbelt. Soc Econ Geol Inc 100th anniversary volume, 965–1000

  • Siebenaller L, Boiron MC, Vanderhaeghe O, Hibsch C, Jessel MW, Andre-Mayer AS, France-Lanord C, Photiades A (2012) Fluid record of rock exhumation across the brittle-ductile transition during formation of a metamorphic core complex (Naxos Island. J Metam Geol, Cyclades. doi:10.1111/jmg.12023

    Google Scholar 

  • Spry PG, Marshall B, Vokes FM (2000) Metamorphosed and metamorphogenic ore deposits. Rev Econ Geol 11:163–201

    Google Scholar 

  • Smith DK (1984) Uranium mineralogy. In: De Vivo B, Ippolito F, Capaldi G, Simpson PR (eds) Uranium geochemistry, mineralogy, geology, exploration and resources. The Institution of Mining and Metallurgy, London, pp 43–88

    Google Scholar 

  • Steele-MacInnis M, Bodnar RJ, Naden J (2011) Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim Cosmochim Acta 75:21–40

    Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl–H2O under vapor-saturated conditions. Geochim Cosmochim Acta 52:989–1005

    Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over temperature from 250 to 700 °C. J Struct Geol 24:1861–1884

    Google Scholar 

  • Tarantola A, Diamond LW, Stünitz H (2010) Modification of fluid inclusions in quartz by deviatoric stress I: experimentally induced changes in inclusion shapes and microstructures. Contrib Miner Petrol 160:825–843

    Google Scholar 

  • Tarantola A, Diamond LW, Stünitz H, Thust A, Pec M (2012) Modification of fluid inclusions in quartz by deviatoric stress. III: influence of principal stresses on inclusion density and orientation. Contrib Mineral Petrol 164:537–550

    Google Scholar 

  • Torrealday HI, Hitzman MW, Stein HJ, Markley RJ, Armstrong R, Broughton D (2000) Re–Os and U–Pb dating of the vein-hosted mineralization at the Kansanshi copper deposit, northern Zambia. Econ Geol 95:1165–1170

    Google Scholar 

  • Touret JLR (1979) Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège méridionale) sont-elles liées à d’anciennes évaporites? Sci Terre 23:95–97

    Google Scholar 

  • Touret JLR, Nijland TG (2013) Prograde, peak and retrograde metamorphic fluids and associated metasomatism in Upper Amphibolite to Granulite facies transitions zones. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Berlin, pp 415–469

    Google Scholar 

  • Unrug R (1983) The Lufilian Arc: a microplate in the Pan-African collision zone of the Congo and the Kalahari cratons. Precambrian Res 21:181–196

    Google Scholar 

  • Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In: Heard HC, Hobbs BE (eds) Mineral and rock deformation: laboratory studies, the Paterson volume 36:161–200

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Google Scholar 

  • Van den Kerkhof AM, Olsen SN (1990) A natural example of superdense CO2 inclusions: microthermometry and Raman analysis. Geochim Cosmochim Acta 54:895–901

    Google Scholar 

  • Vanko DA, Griffith JD, Erickson CL (1992) Calcium-rich brines and other hydrothermal fluids in fluid inclusions from plutonic rocks, Oceanographer Transform, Mid-Atlantic Ridge. Geochim Cosmochim Acta 56:35–47

    Google Scholar 

  • Willis C, Boyd AW, Bindner PE (1970) Carbon monoxide yields in the radiolysis of carbon dioxide at very high dose rates. Can J Chem 48:1951–1954

    Google Scholar 

  • Yardley BWD (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Google Scholar 

  • Yardley BWD (2012) The chemical composition of metasomatic fluids in the crust. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Berlin, pp 17–51

    Google Scholar 

  • Yardley BWD, Graham JT (2002) Origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Google Scholar 

Download references

Acknowledgments

We would like to thank CNRS (NEEDS) and AREVA for financial support. AREVA is also thanked for providing the samples. The authors are grateful to Sandrine Mathieu, Olivier Rouer, Marie-Camille Caumon (GeoRessources, Nancy) and Romain Dalleu (Ecole Nationale Supérieure de Géologie, Nancy) for technical support in providing analytical data on SEM, EMP, Raman spectroscopy and microthermometry, respectively. We would also like to acknowledge the stimulating discussions with Matthew Steele-MacInnis and Michel Cuney. The authors are grateful to Maurice Pagel and two anonymous journal reviewers for their helpful comments and to Jacques Touret for editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Eglinger.

Additional information

Communicated by J. L. R. Touret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eglinger, A., Ferraina, C., Tarantola, A. et al. Hypersaline fluids generated by high-grade metamorphism of evaporites: fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt. Contrib Mineral Petrol 167, 967 (2014). https://doi.org/10.1007/s00410-014-0967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0967-9

Keywords

Navigation