Skip to main content

Advertisement

Log in

From mush to eruption in centuries: assembly of the super-sized Oruanui magma body

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The magmatic systems that give rise to voluminous crystal-poor rhyolite magma bodies can be considered to operate on two contrasting timescales: Those governed by longer-term processes by which a magma acquires its chemical and isotopic characteristics (e.g., fractional crystallisation and assimilation), and those operating at shorter timescales during the physical accumulation of the melt-dominant magma body that finally erupts. We explore the compositional and textural relationships between amphibole and orthopyroxene crystals from the 25.4 ka, 530 km3 (magma) Oruanui eruption products (Taupo volcano, New Zealand) to investigate how processes related to the physical assembly of the pre-eruptive magma body are represented in the crystal record. Over 90 % of orthopyroxenes from the volumetrically dominant high-SiO2 (>74 wt%) rhyolite pumices record textural evidence for a significant disequilibrium event (partial dissolution ± resorption of cores and interiors) prior to the growth of 40–500 μm thick rim zones. This dissolution/regrowth history of orthopyroxene is recorded in the chemistry of co-crystallising amphiboles as a prominent inflection in the concentrations of Mn and Zn, two elements notably enriched in orthopyroxene relative to amphibole. Textural and chemical features, linked with in situ thermobarometric estimates, indicate that a major decompression event preceded the formation of the melt-dominant body. The decompression event is inferred to represent the extraction of large volumes of melt plus crystals from the Oruanui crystal mush/source zone at pressures of 140–300 MPa (~6–12 km depth). Orthopyroxene underwent partial dissolution during ascent before reestablishing in the melt-dominant magma body at pressures of 90–140 MPa (~3.5–6 km). We model Fe–Mg diffusion across the core-rim boundaries along the crystallographic a or b-axes to constrain the timing of this decompression event, which marked establishment of the melt-dominant magma body. Maximum modelled ages indicate that this event did not begin until ~1,600 years before eruption, consistent with constraints from zircon model-age spectra. Once extraction began, it underwent runaway acceleration with a peak extraction age of ~230 years, followed by an apparent period of stasis of ~60 years prior to eruption. The rapidity of the extraction and accumulation processes implies the involvement of a dynamic driving force which, in the rifted continental arc setting of the Taupo Volcanic Zone, seems likely to be represented by magma-assisted extensional tectonic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allan ASR, Wilson CJN, Millet M-A, Wysoczanski RJ (2012) The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40:563–566

    Article  Google Scholar 

  • Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284:409–416

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J Volcanol Geotherm Res 149:85–102

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285

    Article  Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87:1062–1076

    Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503

    Article  Google Scholar 

  • Bachmann O, Oberli F, Dungan MA, Meier M, Mundil R, Fischer H (2007) 40Ar/39Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan volcanic field, Colorado: evidence for an extended crystallization history. Chem Geol 236:134–166

    Article  Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Besancon JR (1981) Rate of cation ordering in orthopyroxenes. Am Mineral 66:965–973

    Google Scholar 

  • Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205

    Article  Google Scholar 

  • Bindeman IN, Valley JW, Wooden JL, Persing HM (2001) Post-caldera volcanism: in situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera. Earth Planet Sci Lett 189:197–206

    Article  Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U-Pb dating of the pre-eruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for >250 k.y. magma residence times. Geology 27:1035–1038

    Article  Google Scholar 

  • Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu Rev Earth Planet Sci 36:153–190

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons. J Petrol 46:3–32

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Davidson JP (2008) Rapid open-system assembly of a large silicic magma body: time-resolved evidence from cored plagioclase crystals in the Oruanui eruption deposits, New Zealand. Contrib Mineral Petrol 156:799–813

    Article  Google Scholar 

  • Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. Rev Mineral Geochem 72:641–690

    Article  Google Scholar 

  • Christiansen EH (2005) Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites. Geol Mag 142:669–681

    Article  Google Scholar 

  • Cooper GF, Wilson CJN, Millet M-A, Baker JA, Smith EGC (2012) Systematic tapping of independent magma chambers during the 1.0 Ma Kidnappers supereruption. Earth Planet Sci Lett 313–314:23–33

    Article  Google Scholar 

  • Costa F, Morgan D (2010) Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner SP, Van Orman JA (eds) Timescales of magmatic processes: from core to atmosphere. Wiley, Chichester. doi:10.1002/9781444328509.ch7

    Google Scholar 

  • Dall’Agnol R, Scaillet B, Pichavant M (1999) An experimental study of lower Proterozoic A-type granite from the eastern Amazonian craton, Brazil. J Petrol 40:1673–1698

    Article  Google Scholar 

  • Dohmen R, Becker H-W, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1,200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Mineral 34:389–407

    Article  Google Scholar 

  • Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB—a semiquantitative thermobarometer. Am Mineral 83:952–969

    Google Scholar 

  • Folkes CB, de Silva SL, Schmitt AK, Cas RAF (2011) A reconnaissance of U-Pb zircon ages in the Cerro Galán system, NW Argentina: prolonged magma residence, crystal recycling, and crustal assimilation. J Volcanol Geotherm Res 206:136–147

    Article  Google Scholar 

  • Ganguly J, Tazzoli V (1994) Fe2+-Mg interdiffusion in orthopyroxene: retrieval from the data on intracrystalline exchange reaction. Am Mineral 79:930–937

    Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039

    Article  Google Scholar 

  • Gravley DM, Wilson CJN, Leonard GS, Cole JW (2007) Double trouble: paired ignimbrite eruptions and collateral subsidence in the Taupo Volcanic Zone, New Zealand. Geol Soc Am Bull 119:18–30

    Article  Google Scholar 

  • Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT, Sutton SR, Rivers ML (2012a) Timescales of quartz crystallization and the longevity of the Bishop giant magma body. PLoS ONE 7:e37492

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012b) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Article  Google Scholar 

  • Hellstrom J, Paton C, Woodhead JD, Hergt JM (2008) Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. In Laser Ablation ICP-MS in the Earth Sciences: current practices and outstanding issues (P Sylvester, ed). Min Assoc Canada Short Course Ser 40:343–348

  • Hiess J, Cole JW, Spinks KD (2007) Influence of the crust and crustal structure on the location and composition of high-alumina basalts of the Taupo Volcanic Zone, New Zealand. NZ J Geol Geophys 50:327–342

    Article  Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Article  Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res 136:169–198

    Article  Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999

    Article  Google Scholar 

  • Huber C, Bachmann O, Dufek J (2011) Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet Sci Lett 304:443–454

    Article  Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841

    Article  Google Scholar 

  • Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308:11–22

    Article  Google Scholar 

  • Karlstrom L, Dufek J, Manga M (2010) Magma chamber stability in arc and continental crust. J Volcanol Geotherm Res 190:249–270

    Article  Google Scholar 

  • Klimm K, Holtz F, Johannes W, King PL (2003) Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precamb Res 124:327–341

    Article  Google Scholar 

  • Klügel A (2001) Prolonged reactions between harzburgite xenoliths and silica-undersaturated melt: implications for dissolution and Fe-Mg interdiffusion rates of orthopyroxene. Contrib Mineral Petrol 141:1–14

    Article  Google Scholar 

  • Liu Y, Anderson AT, Wilson CJN, Davis AM, Steele IM (2006) Mixing and differentiation in the Oruanui rhyolitic magma, Taupo, New Zealand: evidence from volatiles and trace elements in melt inclusions. Contrib Mineral Petrol 151:71–87

    Article  Google Scholar 

  • Lowe DJ, Shane PAR, Alloway BV, Newnham RM (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quat Sci Rev 27:95–126

    Article  Google Scholar 

  • Lowe DJ, Blaauw M, Hogg AG, Newnham RM (2013) Ages of 24 widespread tephras erupted since 30,000 years ago in New Zealand, with re-evaluation of the timing and palaeoclimatic implications of the late-glacial cool episode at Kaipo bog. Quat Sci Rev. doi:10.1016/j.quascirev.2012.11.022

  • Martin VM, Morgan DJ, Jerram DA, Caddick MJ, Prior DJ, Davidson JP (2008) Bang! Month-scale eruption triggering at Santorini Volcano. Science 321:1178

    Article  Google Scholar 

  • Matthews NE, Huber C, Pyle DM, Smith VC (2012) Timescales of magma recharge and reactivation of large silicic systems from Ti diffusion in quartz. J Petrol 53:1385–1416

    Article  Google Scholar 

  • Metz JM, Mahood GA (1985) Precursors to the Bishop Tuff eruption: Glass Mountain, Long Valley, California. J Geophys Res 90:11121–11126

    Article  Google Scholar 

  • Metz JM, Mahood GA (1991) Development of the Long Valley, California, magma chamber recorded in precaldera rhyolite lavas of Glass Mountain. Contrib Mineral Petrol 106:379–397

    Article  Google Scholar 

  • Miller CF, Wark DA (2008) Supervolcanoes and their explosive supereruptions. Elements 4:11–16

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Rowe MC, Wolff JA, Gardner JN, Ramos FC, Teasdale R, Heikoop CE (2007) Development of a continental volcanic field: petrogenesis of pre-caldera intermediate and silicic rocks and origin of the Bandelier magmas, Jemez Mountains (New Mexico, USA). J Petrol 48:2063–2091

    Article  Google Scholar 

  • Rowland JV, Wilson CJN, Gravley DM (2010) Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 190:89–109

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker. Spec Publ IAVCEI 2, pp 129–154

  • Sauerzapf U, Lattard D, Burchard M, Engelman R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermooxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185

    Article  Google Scholar 

  • Saunders K, Blundy J, Dohmen R, Cashman K (2012) Linking petrology and seismology at an active volcano. Science 336:1023–1027

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Schwandt CS, Cygan RT, Westrich HR (1998) Magnesium self-diffusion in orthenstatite. Contrib Mineral Petrol 130:390–396

    Article  Google Scholar 

  • Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc Lond A364:2073–2097

    Article  Google Scholar 

  • Simon JI, Reid MR (2005) The pace of rhyolite differentiation and storage in an ‘archetypical’ silicic magma system, Long Valley, California. Earth Planet Sci Lett 235:123–140

    Article  Google Scholar 

  • Smith D, Barron BR (1991) Pyroxene-garnet equilibration during cooling in the mantle. Am Mineral 76:1950–1963

    Google Scholar 

  • Stimpfl M, Ganguly J, Molin G (2005) Kinetics of Fe 2+-Mg order-disorder in orthopyroxene; experimental studies and applications to cooling rates of rocks. Contrib Mineral Petrol 150:319–334

    Article  Google Scholar 

  • Stix J, Goff F, Gorton MP, Heiken G, Garcia SR (1988) Restoration of compositional zonation in the Bandelier silicic magma chamber between two caldera-forming eruptions: geochemistry and origin of the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico. J Geophys Res 93:6129–6147

    Article  Google Scholar 

  • Sutton AN (1995) Evolution of a large silicic magma system: Taupo volcanic centre, New Zealand. Unpublished PhD thesis, The Open University, Milton Keynes, UK

  • Sutton AN, Blake S, Wilson CJN (1995) An outline geochemistry of rhyolite eruptives from Taupo volcanic centre, New Zealand. J Volcanol Geotherm Res 68:153–175

    Article  Google Scholar 

  • Sutton AN, Blake S, Wilson CJN, Charlier BLA (2000) Late Quaternary evolution of a hyperactive rhyolite magmatic system: Taupo volcanic centre, New Zealand. J Geol Soc Lond 157:537–552

    Article  Google Scholar 

  • ter Heege JH, Dohmen R, Becker H, Chakraborty S (2006) Experimental determination of Fe-Mg interdiffusion coefficients in orthopyroxene using pulsed laser ablation and nanoscale thin films. AGU Fall Meeting, San Francisco, CA, abstract MR21A-0004

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452

    Article  Google Scholar 

  • Tomiya A, Takahashi E (2005) Evolution of the magma chamber beneath Usu Volcano since 1663: a natural laboratory for observing changing phenocryst compositions and textures. J Petrol 46:2395–2426

    Article  Google Scholar 

  • Vandergoes MJ, Hogg AG, Lowe DJ, Newnham RM, Denton GH, Southon J, Barrell DJA, Wilson CJN, McGlone MS, Allan ASR, Almond PC, Petchey F, Dabell K, Dieffenbacher-Krall AC, Blaauw M (2013) A revised age for the Kawakawa/Oruanui tephra, a key marker for the last Glacial Maximum in New Zealand. Quat Sci Rev. doi:10:1016/j.quascirev.2012.11.006

    Google Scholar 

  • Vazquez JA, Reid MR (2004) Probing the accumulation history of the voluminous Toba magma. Science 305:991–994

    Article  Google Scholar 

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volcanol Geotherm Res 112:133–174

    Article  Google Scholar 

  • Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo volcano, New Zealand: insights from U-Th model-age spectra in zircons. J Petrol 50:875–907

    Article  Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28

    Article  Google Scholar 

  • Wilson CJN, Blake S, Charlier BLA, Sutton AN (2006) The 26.5 ka Oruanui eruption, Taupo volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body. J Petrol 47:35–69

    Article  Google Scholar 

  • Wilson CJN, Seward TM, Allan ASR, Charlier BLA, Bello L (2012) A comment on: ‘TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz’, by Jay B. Thomas, E. Bruce Watson, Frank S. Spear, Philip T. Shemella, Saroj K. Nayak and Antonio Lanzirotti. Contrib Mineral Petrol 164:359–368

    Article  Google Scholar 

  • Wolff JA, Ramos FC (2003) Pb isotope variations among Bandelier Tuff feldspars: no evidence for a long-lived silicic magma chamber. Geology 31:533–536

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Marsden Fund administered by the Royal Society of New Zealand (Grant VUW0813) and a Bright Futures Top Achiever Doctoral Scholarship (for AA) administered by the Tertiary Education Commission of New Zealand. We thank Steve Blake and Kate Saunders for their thorough and constructive reviews, and Jochen Hoefs for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan S. R. Allan.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, A.S.R., Morgan, D.J., Wilson, C.J.N. et al. From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contrib Mineral Petrol 166, 143–164 (2013). https://doi.org/10.1007/s00410-013-0869-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0869-2

Keywords

Navigation