Skip to main content
Log in

Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Primary igneous monazite from the Polokongka La granite of the Tso Morari complex in the western Himalayas has been partially replaced by a three-layered corona of metamorphic fluor-apatite, allanite + U- and Th-bearing phases (huttonite + brabantite), and epidote. The alteration is related to high-pressure amphibolite-facies (10–11 kbar and 587–695 °C) fluid-induced retrogression of the ultra-high-pressure granite during exhumation after India–Asia collision. The corona textures can be explained by pseudomorphic partial replacement of the original monazite to apatite and allanite via a fluid-mediated coupled dissolution–reprecipitation process. Mass balance calculations using the volume proportions and compositions of coronal minerals show that the REE, U, Th, Pb, Ba and P were conserved and not transported outside the alteration corona. The formation of fluor-apatite, allanite, huttonite and coffinite from monazite and the immobility of REE, U and Th require an influx of alkali- and F-bearing, Ca-rich fluid having high Ca/Na into the corona. We are aware of only two other occurrences of such alteration textures, and these have several similarities in terms of geodynamic setting and P–T histories of the host rocks. We suggest that there may be a common mechanism of exhumation style, and source and composition of fluids during retrogression of granitoid rocks in collisional orogens and that such breakdown textures can be used to identify metagranites that have experienced high-P metamorphism in continental collision zones, which is otherwise difficult to constrain due to the high variance of the mineral assemblages in these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashworth JR, Sheplev VS (1997) Diffusion modeling of metamorphic layered coronas with stability criterion and consideration of affinity. Geochim Cosmochim Acta 61:3671–3689

    Article  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–551

    Article  Google Scholar 

  • Bingen B, van Breemen O (1998) U-Pb monazite ages in amphibolite to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Miner Petrol 132:336–353

    Article  Google Scholar 

  • Broska I, Williams TC, Janáka M, Nagy G (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82:71–83

    Article  Google Scholar 

  • Budzyń B, Harlov D, Williams M, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Miner 96:1547–1567

    Article  Google Scholar 

  • Cherniak DJ, Pyle JM (2008) Th diffusion in monazite. Chem Geol 256:52–61

    Article  Google Scholar 

  • Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840

    Article  Google Scholar 

  • Chu MF, Wang KL, Griffin WL, Chung SL, O’Reilly SY, Pearson NJ, Iizuka Y (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan Granitoids. J Petrol 50:1829–1855

    Article  Google Scholar 

  • Cocherie A, Be Mezeme E, Legendre O, Fanning CM, Faure M, Rossi P (2005) Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. Am Miner 90:607–618

    Article  Google Scholar 

  • Colchen M, Mascle G, Delaygue G (1994) Lithostratigraphy and age of the formations in the Tso Morari dome, 9th Himalayan-Karakoram-Tibet workshop, Kathmandu, Abstract volume, Geol. Soc. Nepal

  • Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Minerals 28:219–224

    Article  Google Scholar 

  • de Sigoyer J (1998) Mécanismes d’exhumation des roches de haute pression basse température, en contexte de convergence continentale (Tso Morari, NW Himalaya), Ph.D. thesis, Univ. Claude Bernard, Lyon, France

  • de Sigoyer J, Guillot S, Lardeaux JM, Mascle G (1997) Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). Eur J Mineral 9:1073–1083

    Google Scholar 

  • de Sigoyer J, Guillot S, Dick P (2004) Exhumation of the ultra high-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics 23: TC3003. doi:10.1029/2002TC001492

  • Finger F, Broska I, Roberts M, Schermaier A (1998) Replacement of primary monazite by apatite–allanite–epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am Miner 85:248–258

    Google Scholar 

  • Fisher GW, Elliott D (1974) Criteria for quasi-steady diffusion and local equilibrium in metamorphism. In: Hofmann AW et al (eds) Geochemical transport and kinetics, vol 634. Carnegie Institution of Washington Publication, Washington, pp 231–241

    Google Scholar 

  • Fisher GW, Lasaga AC (1981) Irreversible thermodynamics in petrology. Rev Mineral 8:171–209

    Google Scholar 

  • Förster HJ (1998) The chemical composition of REE–Y–Th–U rich accessory minerals in peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany: part I. The monazite-(Ce)-brabantite solid solution series. Am Miner 83:259–272

    Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Reequilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Girard M (2001) Metamorphism and tectonics of the transition between non metamorphic Tethyan Himalaya sediments and the North Himalayan Crystalline Zone (Rupshu area, NW India), thesis 100 pp Univer Lausanne

  • Girard M, Bussy F (1999) Late Pan-African magmatism in NW Himalaya: new geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW Himalaya). Schweiz Mineral Petrogr Mitt 79:399–417

    Google Scholar 

  • Guillot S, de Sigoyer J, Lardeaux JM, Mascle G (1997) Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): evidence for continental subduction during India–Asia convergence. Contrib Miner Petro 128:197–212

    Article  Google Scholar 

  • Hansen EC, Harlov DE (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2002) High grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano Zone, Northern Italy part II: phosphate mineral chemistry. J Petrol 43:801–824

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals in apatite: Nature and experiment. Part II. Fluorapatite. Am Miner 88:1209–1229

    Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. Am Miner 87:245–261

    Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Miner Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300–900 °C and 200–1000 MPa: metasomatism and the propagation of metastable mineral phases. Am Miner 92:1652–1664

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Knapp RB (1989) Spatial and temporal scales of local equilibrium in dynamic fluid-rock systems. Geochim Cosmochim Acta 53:1955–1964

    Article  Google Scholar 

  • Kretz R (1983) Symbols of rock forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM (2005) The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234:83–97

    Article  Google Scholar 

  • Möller A, Hensen BJ, Armstrong RA, Mezger K, Ballévre M (2003) U-Pb zircon and monazite age constraints on granulite-facies metamorphism and deformation in the Strangways Metamorphic Complex (central Australia). Contrib Miner Petrol 145:406–423

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Miner 80:21–26

    Google Scholar 

  • O’Brien PJ, Zotov N, Law R, Khan MA, Jan MQ (2001) Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology (Boulder) 29:435–438

    Article  Google Scholar 

  • Orlandi P, Pasedo M (2006) Allanite-(La) from Buca Della Vena Mine, Apuan Alps, Italy, an epidote-group mineral. Canad Mineral 44:63–68

    Article  Google Scholar 

  • Parsons I, Lee MR (2009) Mutual replacement reactions in alkali feldspars I: microtextures and mechanisms. Contrib Miner Petrol 157:641–661

    Article  Google Scholar 

  • Plümper O, Putnis A (2009) The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions. J Petrol 50:967–987

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Miner Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction. In: Oelkers EH, Schott J (eds) Reviews in mineralogy and geochemistry, vol 70, pp 87–124

  • Putnis A, Austrheim H (2010) Fluid induced processes: metasomatism and metamorphism. Geofluids 10:254–269

    Google Scholar 

  • Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous red-clouded feldspars: evidence of large-scale crustal fluid–rock interaction. Lithos 95:10–18

    Article  Google Scholar 

  • Sachan HK, Mukherjee BK, Ogasawara Y, Mayurama S, Pandey A, Yoshioka N, Ishida H (2001) Discovery of coesite from Indian Himalaya: consequences on Himalayan tectonics, UHPM Workshop, Waseda University 4A04: 124–128

  • Schitter F (1997) Spurenelementkonzentration in den gesteinsbildenden Mineralien des Gebhartser Diorits und des Eisgarner Granits, bestimmt mittels der Instrumentellen Neutronenaktivierungsanalyse, Masters thesis, Universität Salzburg, Salzburg

  • Spear FS (2010) Monazite–allanite phase relations in metapelites. Chem Geol 279:55–62

    Article  Google Scholar 

  • Steck A, Epard JL, Vannay JC, Hunziker J, Girard M, Moraro A, Robyr M (1998) Geological transect across the Tso Morari and Spiti areas: the nappe structures of the Tethys Himalaya. Eclog Geol Helv 91:103–121

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Trivedi JR, Sharma KK, Gopalan K (1986) Widespread Caledonian magmatism in Himalaya and its tectonic significance. Terra Cognita 6:144

    Google Scholar 

  • Vavra G, Schaltegger U (1999) Post-granulite facies monazite growth and rejuvenation during Permian to Lower Jurassic thermal and fluid events in the Ivrea Zone (Southern Alps). Contrib Miner Petrol 134:405–414

    Article  Google Scholar 

  • Watt GR, Harley SL (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Miner Petrol 114:550–566

    Article  Google Scholar 

  • Zhu XK, O’Nions RK (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermo chronology: a case study from the Lewisian terrain. Earth Planet Sci Lett 171:209–220

    Article  Google Scholar 

Download references

Acknowledgments

The work is funded through ISIRD research grants of the Indian Institute of Technology, Kharagpur to DU and KLP and is gratefully acknowledged. Samples were collected by KLP during a pre-HKT-2008 field tour to the Ladakh Himalayas in 2007, sponsored by the Department of Science and Technology, New Delhi, India. Constructive comments by two anonymous reviewers have greatly helped to improve the manuscript. Editorial handling by Prof. T L Grove is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewashish Upadhyay.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, D., Pruseth, K.L. Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements. Contrib Mineral Petrol 164, 303–316 (2012). https://doi.org/10.1007/s00410-012-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0739-3

Keywords

Navigation