Skip to main content
Log in

Retention of Sm–Nd isotopic ages in garnets subjected to high-grade thermal reworking: implications for diffusion rates of major and rare earth elements and the Sm–Nd closure temperature in garnet

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Garnet is a vital mineral for determining constrained P–T–t paths as it can give both the P–T and t information directly. However, estimates of the closure temperature of the Sm–Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. In this study, five igneous garnets from an early Proterozoic 2414 ± 6 Ma garnet—cordierite bearing s-type granite—which was subjected to high-T reworking have been dated to examine their diffusional behaviour in the Sm–Nd system. Garnets 8, 7, 6 and 2.5 mm in diameter were compositionally profiled and then dated, producing two-point Sm–Nd isochron ages of 2412 ± 10, 2377 ± 5, 2370 ± 5 and 2365 ± 8 and 2313 ± 11 Ma, respectively. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element EMPA and LA-ICPMS REE traverses reveal homogenous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major element zoning suggest that diffusion rates of REEs are considerably slower than that of the major cations. The retention of REE zoning and the lack of resetting in the largest grains suggest that Sm–Nd closure temperature in garnet is a function of grain size, thermal history and REE zoning in garnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anczkiewicz R, Thirlwall, MF (2003) Improving precision of Sm–Nd garnet dating by H2SO4 leaching: a simple solution to the phosphate inclusion problem. In: Vance D, Muller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures. Geological Society of London, Australia, Special Publication No 220, pp 83–91

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153

    Article  Google Scholar 

  • Bea F, Montero P, Garuti G, Zacharini F (1997) Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets: a LA-ICP-MS study. Geostand Newsl 21(2):253–270

    Article  Google Scholar 

  • Brown M (1993) P–T–t evolution of orogenic belts and the causes of regional metamorphism. J Geol Soc 150:227–241

    Article  Google Scholar 

  • Carlson WD (2006) Rates of Fe, Mg, Mn and Ca diffusion in garnet. Am Mineral 91:1–11

    Article  Google Scholar 

  • Carson CJ, Ague JJ, Grove M, Coath CD, Harrison TM (2002) U–Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. Earth Planet Sci Lett 199(3–4):287–310

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111:74–86

    Article  Google Scholar 

  • Chakraborty S, Rubie DC (1996) Mg tracer diffusion in almuminosilicate garnets at 750–850°C, 1 atm and 1300°C, 8.5 GPa. Contrib Mineral Petrol 122:406–414

    Article  Google Scholar 

  • Cheng H, King RL, Nakamura E, Vervoort JD, Zhou Z (2008) Coupled Lu–Hf and Sm–Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. J Metamorph Geol 26(7):741–758

    Article  Google Scholar 

  • Cherniak DJ (1998) Rare earth element and gallium diffusion in yttrium aluminium garnet. Phys Chem Mineral 26:156–163

    Article  Google Scholar 

  • Cygan RT, Lasaga AC (1985) Self diffusion of magnesium in garnet at 750°C to 900°C. Am J Sci 285:328–350

    Google Scholar 

  • Dahlquist JA et al (2007) Magmatic evolution of the Penon Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95(3–4):177–207

    Article  Google Scholar 

  • Daly SJ, Fanning CM (1993) Archaean. In: Drexel JF, Preiss WV, Parker AJ (eds) The geology of South Australia, vol 1. The Precambrian. Geological Survey of South Australia, Bulletin 54, pp 32–49

  • Daly SJ, Fanning CM, Fairclough MC (1998) Tectonic evolution and exploration potential of the Gawler Craton, South Australia. AGSO J Aust Geol Geophys 17(3):145–168

    Google Scholar 

  • Dodson M (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–264

    Article  Google Scholar 

  • Dodson M (1986) Closure profiles in cooling systems. In: Freer DR (ed) Kinetics and transport in silicate and oxide systems, materials science forum 7. Mineralogical Society of Great Britain, pp 145–154

  • Droop GTR (1987) A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineral Mag 51:431–437

    Google Scholar 

  • du Bray EA (1988) Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis—southeastern Arabian Shield. Contrib Mineral Petrol 100:205–212

    Article  Google Scholar 

  • Duchene S, Aissa R, Vanderhaeghe O (2006) Pressure–temperature–time evolution of metamorphic rocks from naxos (Cyclades, Greece): constraints from thermobarometry and Rb/Sr dating. Geodinam Acta 19(5):301–321

    Article  Google Scholar 

  • Dutch RA, Hand M, Clark C (2005) Cambrian reworking of the southern Australian Proterozoic Curnamona Province: constraints from regional shear-zone systems. J Geol Soc 162:763–775

    Article  Google Scholar 

  • Dutch R, Hand M, Kinny P (2008) High-grade Palaeoproterozoic reworking in the southeastern Gawler Craton, South Australia. Aust J Earth Sci 55:1063–1081

    Article  Google Scholar 

  • Fanning CM, Oliver RL, Cooper JA (1981) The Carnot Gneisses, southernmost Eyre Peninsula. Quarterly Geological Notes, vol 80. Geological Survey of South Australia, pp 7–12

  • Fanning CM, Flint RB, Parker AJ, Ludwig KR, Blissett AH (1988) Refined Proterozoic evolution of the Gawler Craton, South Australia, through U–Pb zircon geochronology. Precambrian Res 40(41):363–386

    Article  Google Scholar 

  • Fanning CM, Reid AJ, Teale GS (2007) A geochronological framework for the Gawler Craton, South Australia. South Australia Geological Survey, Bulletin 55

  • Fitzsimons ICW, Kinny PD, Wetherley S, Hollingsworth DA (2005) Bulk chemical control on metamorphic monazite growth in pelitic schists and implications for U–Pb age data. J Metamorph Geol 23(4):261–277

    Article  Google Scholar 

  • Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages: a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181(3):327–340

    Article  Google Scholar 

  • Foster G et al (2004) The generation of prograde P–T–t points and paths: a textural, compositional, and chronological study of metamorphic monazite. Earth Planet Sci Lett 228(1–2):125–142

    Article  Google Scholar 

  • Freer D, Edwards A (1999) An experimental study of Ca-(Fe, Mg) interdiffusion in silicate garnets. Contrib Mineral Petrol 134:370–379

    Article  Google Scholar 

  • Ganguly J, Tirone M (1999) Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: theoretical formulation and applications. Earth Planet Sci Lett 170:131–140

    Article  Google Scholar 

  • Ganguly J, Tirone M (2001) Relationship between cooling rate and cooling age of a mineral: theory and applications to meteorites. Meteor Planet Sci 36:167–175

    Article  Google Scholar 

  • Ganguly J, Cheng W, Chakraborty S (1998a) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib Mineral Petrol 131:171–180

    Article  Google Scholar 

  • Ganguly J, Tirone M, Hervig RL (1998b) Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks. Science 281:805–807

    Article  Google Scholar 

  • Gibson HD, Carr SD, Brown RL, Hamilton MA (2004) Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y–Th–U X-ray mapping. Chem Geol 211(3–4):237–260

    Article  Google Scholar 

  • Halpin JA, Clarke CL, White RW, Kelsey DE (2007) Contrasting P–T–t paths for neoproterozoic metamorphism in MacRobertson and kemp lands, east Antarctica. J Metamorph Geol 25(6):683–701

    Article  Google Scholar 

  • Hand M, Reid A, Jagodzinski L (2007) Tectonic framework and evolution of the Gawler Craton, southern Australia. Econ Geol 102(8):1377–1395

    Article  Google Scholar 

  • Harley SL, Kelly NM (2007) The impact of zircon-garnet REE distribution data on the interpretation of zircon U–Pb ages in complex high-grade terrains: an example from the Rauer Islands, East Antarctica. Elsevier, Amsterdam, pp 62–87

  • Harrison WJ, Wood BJ (1980) An experimental investigation of the partitioning of REE between garnet and liquid with reference to the role of defect equilibria. Contrib Mineral Petrol 72:145–155

    Article  Google Scholar 

  • Hensen BJ, Zhou B (1995) Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: implications for the Sm–Nd closure temperature. Geology 23(3):225–228

    Article  Google Scholar 

  • Hinchey AM, Carr SD, Rayner N (2007) Bulk compositional controls on the preservation of age domains within metamorphic monazite: a case study from quartzite and garnet-cordierite-gedrite gneiss of Thor-Odin dome, Monashee complex, Canadian Cordillera. Chem Geol 240(1–2):85–102

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343

    Article  Google Scholar 

  • Humphries FJ, Cliff RA (1982) Sm–Nd dating and cooling history of Scourian granulites, Sutherland. Nature 295:515–517

    Article  Google Scholar 

  • Jagodzinski E et al (2006) Compilation of SHRIMP U–Pb geochronological data for the Gawler Craton, South Australia, 2006. Report Book, 2006/20. Department of Primary Industries and Resources, South Australia

  • Jessup MJ et al (2008) P–T–t–D paths of Everest Series schist, Nepal. J Metamorph Geol 26(7):717–739

    Article  Google Scholar 

  • Jung S, Kroner A, Kroner S (2007) A similar to 700 Ma Sm–Nd gamet-whole rock age from the granulite facies Central Kaoko Zone (Namibia): evidence for a cryptic high-grade polymetamorphic history? Lithos 97(3–4):247–270

    Article  Google Scholar 

  • Kelly NM, Clarke GL, Harley SL (2006) Monazite behaviour and age significance in poly-metamorphic high-grade terrains: a case study from the western Musgrave Block, central Australia. Elsevier, Amsterdam, pp 100–134

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212

    Article  Google Scholar 

  • Kohn MJ (2008) P–T–t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol Soc Am Bull 120(3–4):259–273

    Article  Google Scholar 

  • Kohn MJ, Spear F (2000) Retrograde net transfer reaction insurance for pressure–temperature estimates. Geology 28(12):1127–1130

    Article  Google Scholar 

  • Kylander-Clark ARC et al (2007) Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chem Geol 242(1–2):137–154

    Article  Google Scholar 

  • Lanzirotti A, Hanson GN (1996) Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist, Connecticut, USA: implications for monazite stability in metamorphic rocks. Contrib Mineral Petrol 125(4):332–340

    Article  Google Scholar 

  • Loomis TP, Ganguly J, Elphick SC (1985) Experimental determination of cation diffusivities in aluminosilicate garnets. Contrib Mineral Petrol 90:45–51

    Article  Google Scholar 

  • Ludwig KR (2003) Users Manual for Isoplot/Ex, Version 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Berkeley, CA, Special Publication No. 4

  • Mahar EM, Baker JM, Powell R, Holland TJB, Howell N (1997) The effect of Mn on mineral stability in metapelites. J Metamorph Geol 15(2):223–238

    Article  Google Scholar 

  • Mawby J, Hand M, Foden J (1999) Sm–Nd evidence for high-grade Ordovician metamorphism in the Arunta Block, central Australia. J Metamorph Geol 17(6):653–668

    Article  Google Scholar 

  • Medard E, McCammon C, Barr J, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844

    Article  Google Scholar 

  • Mezger K, Essene EJ, Halliday AN (1992) Closure temperatures of the Sm–Nd system in metamorphic garnets. Earth Planet Sci Lett 113:397–409

    Article  Google Scholar 

  • Parker AJ (1980) The Kalinjala mylonite zone, eastern Eyre Peninsula. Quarterly Geological Notes, vol 74. Geological Survey of South Australia, pp 6–11

  • Parker AJ (1993) Palaeoproterozoic. In: Drexel JF, Preiss WV, Parker AJ (eds) The geology of South Australia. The Precambrian, vol 1. Geological Survey of South Australia, Bulletin 54, pp 50–105

  • Payne JL, Hand M, Barovich KM, Wade BP (2008) Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. Aust J Earth Sci 55(5):623–640

    Article  Google Scholar 

  • Pearce NJG et al (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1): 115–144

    Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6(2):173–204

    Article  Google Scholar 

  • Pyle J, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mater Res 1(6):1

    Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Mineral 88:338–351

    Google Scholar 

  • Reid A, Vassallo JJ, Wilson CJL, Fanning CM (2007) Timing of the Kimban Orogen on the southern Eyre Peninsula. Report Book, 2007/5. Department of Primary Industries and Resources, South Australia

  • Reid A, Hand M, Jagodzinski E, Kelsey DE, Pearson N (2008) Palaeoproterozoic orogenesis in the southeastern Gawler Craton, South Australia. Aust J Earth Sci 55:449–471

    Article  Google Scholar 

  • Rutherford L, Hand M, Mawby J (2006) Delamerian-aged metamorphism in the southern Curnamona Province, Australia: implications for the evolution of the Mesoproterozoic Olarian Orogeny. Terra Nova 18(2):138–146

    Article  Google Scholar 

  • Schwarz M (2003a) LINCOLN map sheet. South Australia. Geological Survey. Geological Atlas 1:250 000 Series—Explanatory Notes

  • Schwarz M (2003b) Lincoln, South Australia, explanatory notes: 1:250000 geological series, sheet SI53-11. Geological Survey of South Australia

  • Shand SJ (1949) Eruptive rocks. Wiley, New York, p 488

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Monograph Series, 1. Mineralogical Society of America, Washington, DC

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates, geochemical, geobiological, and materials importance, vol 48. Mineralogical Society of America, Washington, DC, pp 293–335

  • Swain G et al (2005) Provenance and tectonic development of the late Archaean Gawler Craton, Australia: U–Pb zircon, geochemical and Sm–Nd isotopic implications. Precambrian Res 141:106–136

    Article  Google Scholar 

  • Thomson BP (1980) Geological map of South Australia. Geological Survey of South Australia, Department of Mines Energy, Adelaide, Australia, pp 4

    Google Scholar 

  • Tirone M et al (2005) Rare earth diffusion kinetics in garnet: experimental studies and applications. Geochim Cosmochim Acta 69(9):2385–2398

    Article  Google Scholar 

  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester Paul J (ed) Laser-ablation-ICPMS in the earth sciences: principles and applications. Mineralogical Association of Canada, Ottawa, ON, Canada

  • Van Orman JA, Grove TL, Schimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope signal crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424

    Google Scholar 

  • Vassallo JJ, Wilson CJL (2001) Structural repetition of the Hutchison Group metasediments, Eyre Peninsula, South Australia. Aust J Earth Sci 48(2):331–345

    Article  Google Scholar 

  • Vassallo JJ, Wilson CJL (2002) Palaeoproterozoic regional-scale non-coaxial deformation: an example from eastern Eyre Peninsula, South Australia. J Struct Geol 24(1):1–24

    Article  Google Scholar 

  • White RW, Powell R (2002) Melt loss and the preservation of granulite facies mineral assemblages. J Metamorph Geol 20(7):621–632

    Article  Google Scholar 

  • White RW, Powell R, Clarke GL (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt Stafford, Central Australia. Contrib Mineral Petrol 44(11):1937–1960

    Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25(5):511–527

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ (2002) Microprobe monazite geochronology: putting absolute time into microstructural analysis. J Struct Geol 24:1013–1028

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank James Van Orman and an anonymous reviewer for helpful and constructive reviews which significantly improved this contribution. Ben Wade and Justin Payne for assistance with LA-ICP-MS analyses. David Bruce for assistance with the garnet geochronology. The department of Primary Industries and Resources, South Australia, is acknowledged for logistical support during sample collection. Funding for this study has been provided by Australian Research Council Grant LP 0454301 in conjunction with the department of Primary Industry and Resources, South Australia. This contribution is TRaX paper number 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rian Dutch.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutch, R., Hand, M. Retention of Sm–Nd isotopic ages in garnets subjected to high-grade thermal reworking: implications for diffusion rates of major and rare earth elements and the Sm–Nd closure temperature in garnet. Contrib Mineral Petrol 159, 93–112 (2010). https://doi.org/10.1007/s00410-009-0418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0418-1

Keywords

Navigation