Skip to main content
Log in

The PT-phase relations of an MgO-rich Hawaiian tholeiite: the compositions of primary Hawaiian tholeiites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The PT-phase relations of a Hawaiian tholeiite with 18.2% MgO has olivine–orthopyroxene multiple saturation at 20.5 kbar and 1,550°C. This pressure is less than the pressure at the lithosphere/asthenosphere transition, and it is suggested that tholeiites with this and lesser MgO contents are fractionated. Assuming a harzburgitic residuum it is shown that Hawaiian primary tholeiites contain about 23% MgO, and are generated at 36±5 kbar and 1,680±50°C. This pressure is equivalent to a depth of 112 km, which is consistent with the thickness of the lithosphere and thermal plume modeling. The minimal MgO content of primary Hawaiian tholeiites is suggested as 19% MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen C-Y, Frey FA, Rhodes JM, Easton RM (1996) Temporal geochemical evolution of Kilauea volcano: comparison of Hilina and Puna basalts. Geophys Monogr 95:161–181

    Google Scholar 

  • Clague DA (1988) Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii. J Petrol 29:1161–1186

    CAS  Google Scholar 

  • Clague DA, Frey FA (1982) Petrology and trace element geochemistry of the Honolulu volcanics, Oahu: implications of the oceanic mantle beneath Hawaii. J Petrol 23:447–504

    CAS  Google Scholar 

  • Clague D, Weber WS, Dixon JE (1991) Picritic glasses from Hawaii. Nature 353:553–556

    Article  CAS  Google Scholar 

  • Cohen RS, Ito K, Kennedy GC (1967) Melting and phase relations in an anhydrous basalt to 40 kilobars. Am J Sci 265:475–518

    CAS  Google Scholar 

  • Denlinger RP (1991) A revised estimate for the temperature structure of the oceanic lithosphere. J Geophys Res 97:7219–7222

    Google Scholar 

  • Eaton JP, Murata KJ (1960) How volcanoes grow. Science 132:925–938

    CAS  Google Scholar 

  • Eggins SM (1992) Petrogenesis of Hawaiian tholeiites: 1, phase equilibria constraints. Contrib Mineral Petrol 110:387–397

    CAS  Google Scholar 

  • Elthon D (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature 278:514–518

    Google Scholar 

  • Frey FA, Rhodes JM (1993) Intershield geochemical differences among Hawaiian volcanoes: implications for source compositions, melting processes and magma ascent paths. Phil Trans R Soc Lond A 342:121–136

    CAS  Google Scholar 

  • Frey FA, Suen C, Stockman HW (1985) The Ronda high temperature peridotite: geochemistry and petrogenesis. Geochim Cosmochim Acta 49:2469–2491

    Article  CAS  Google Scholar 

  • Frey FA, Shimizu N, Leinbach A, Obata M, Takazawa (1991) Compositional variations within the lower layered zone of the Horoman peridotite, Hokkaido, Japan: Constraints on models for melt-solid segregation. J Petrol Spec 211–227

    Google Scholar 

  • Garcia MO, Foss DJP, West HB, Mahoney JJ (1995a) Geochemical and isotopic evolution of Loihi volcano, Hawaii. J Petrol 36:1647–1674

    CAS  Google Scholar 

  • Garcia MO, Hulsebosch TP, Rhodes JM (1995b) Olivine-rich submarine basalts from the southwest rift zone of Mauna Loa volcano: implications for magmatic processes and geochemical evolution. Geophys Monogr 92:219–239

    Google Scholar 

  • Green DH (1970) The origin of basaltic and nephelinitic magmas. Trans Leicester Litt Phil Soc 64:26–54

    Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    CAS  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Plan Sci Lett 114:477–489

    Article  CAS  Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151

    Article  CAS  Google Scholar 

  • Ito K, Kennedy GC (1967) Melting and phase relations in a natural peridotite to 40 kilobars. Am J Sci 265:519–538

    CAS  Google Scholar 

  • Kurz MD, Kenna TC, Kammer DP, Rhodes JM, Garcia MO (1995) Isotopic evolution of Mauna Loa volcano: a view from the submarine southwest rift zone. Geophys Monogr 92:289–300

    Google Scholar 

  • Kushiro I (1996) Partial melting of fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. Geophys Monogr 95:109–122

    Google Scholar 

  • Kushiro I, Yoder HS (1974) Formation of eclogite from garnet lherzolite: liquidus relations in a portion of the system MgSiO3-CaSiO3-Al2O3 at high pressures. Carnegie Inst Wash Yb 73:266–269

    Google Scholar 

  • Lassiter JC, Hauri EH, Reiners PW, Garcia MO (2000) Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Plan Sci Lett 178:269–284

    Article  Google Scholar 

  • Leeds AR, Knopoff L, Kausel EG (1974) Variations of upper mantle structure under the Pacific ocean. Science 186:141–143

    Google Scholar 

  • Leeman WP, Gerlach DC, Garcia MO, West HB (1994) Geochemical variations in lavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume derived magmas. Contrib Mineral Petrol 116:62–77

    CAS  Google Scholar 

  • Liu M, Chase CG (1991) Evolution of Hawaiian basalts: a hotspot melting model. Earth Planet Sci Lett 104:151–165

    Article  CAS  Google Scholar 

  • Maaløe S (1973) Temperature and pressure relations of ascending primary magmas. J Geophys Res 78:6877–6886

    Google Scholar 

  • Maaløe S (1979) Compositional range of primary tholeitic magmas evaluated from major-element trends. Lithos 12:59–72

    Google Scholar 

  • Maaløe S (2004) The solidus of harzburgite to 30 kbar pressure: the compositions of primary abyssal tholeiite. Mineral Petrol 81:1–17

    Article  Google Scholar 

  • Maaløe S, Aoki K (1977) The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib Mineral Petrol 63:161–173

    Google Scholar 

  • Maaløe S, Jakobsson SP (1980) The PT phase relations of a primary oceanite from the Reykjanes peninsula, Iceland. Lithos 13:237–246

    Article  Google Scholar 

  • Maaløe S, Pedersen RB, James D (1988) Delayed fractionation of basaltic lavas. Contrib Mineral Petrol 98:401–407

    Google Scholar 

  • Maaløe S, Tumyr O, James D (1989) Population density and zoning of olivine phenocrysts in tholeiites from Kauai, Hawaii. Contrib Mineral Petrol 101:176–186

    Google Scholar 

  • MacDonald GA, Abbot AT (1979) Volcanoes in the Sea. University Press Honolulu, Honolulu, p 441

    Google Scholar 

  • Martin CE, Carlson RW, Shirey SB, Frey FA, Chen C-Y (1994) Os isotopic variation in basalts from Haleakala volcano, Maui, Hawaii: A record of magmatic processes in oceanic mantle and crust. Earth Plan Sci Lett 128:287–301

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Lassiter JC, Farley KA, Bogue SW (2003) Geochemistry of Kauai shield-stage lavas: Implications for the chemical evolution of the Hawaiian plume. Geochem Gephys Geosys 4(1):32

    Google Scholar 

  • O‘Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133

    Article  Google Scholar 

  • Obata M, Nishimoto H (1992) Whole-rock chemistry of the Horoman ultramafic rocks, Hokkaido, Japan. Kumamoto J Sci Geol 2:25–36

    Google Scholar 

  • Quick JE (1980) The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California. Contrib Mineral Petrol 78:413–422

    Google Scholar 

  • Rhines FN (1956) Phase diagrams in metallurgy. McGraw-Hill, New York, p 209

    Google Scholar 

  • Rhodes JM (1995) The 1852 and 1868 Mauna Loa picrite eruptions: clues to parental magma compositions and magmatic plumbing systems. Geophys Monogr 92:241–262

    Google Scholar 

  • Rhodes JM (1996) Geochemical stratigraphy of lava flows samples by the Hawaii Scientific Drilling Project. J Geophys Res 101:11729–11746

    Article  Google Scholar 

  • Rhodes JM, Weis D, Garcia MO, Kurz MD. The evolution of Mauna Loa volcano: submarine picritic magmas from the southwest rift zone. J Petrol (in preparation)

    Google Scholar 

  • Ribe NM, Christensen UR (1999) The dynamical origin of Hawaiian volcanism. Earth Plan Sci Lett 171:517–531

    Article  CAS  Google Scholar 

  • Richardson C, McKenzie D (1994) Radioactive disequilibria from 2D models of melt generation by plumes and ridges. Earth Planet Sci Lett 128:425–437

    Article  CAS  Google Scholar 

  • Roden MF, Trull T, Hart SR, Frey FA (1994) New Nd, Pb and Sr isotopic constraints on the constitution of the Hawaiian plume: results from the Koolau volcano, Oahu, Hawaii, USA. Geochim Cosmochim Acta 58:1431–1440

    Article  CAS  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    CAS  Google Scholar 

  • Schwab BE, Johnston AD (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42:1789–1811

    Article  CAS  Google Scholar 

  • Staudigel H, Zindler A, Hart SR, Leslie T, Chen C-Y, Clague D (1984) The isotope systematics of a juvenile intraplate volcano: Pb, Nd and Sr isotope ratios of basalts from Loihi Seamount, Hawaii. Earth Plan Sci Lett 69:13–29

    Article  CAS  Google Scholar 

  • Stille P, Unruh DM, Tatsumoto M (1983) Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature 304:25–29

    CAS  Google Scholar 

  • Takahashi E, Kushiro I (1983) Melting of dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879

    CAS  Google Scholar 

  • Takahashi E, Shimazaki T, Tsuzaki Y, Yoshida H (1993) Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Phil Trans R Soc Lond A 342:105–120

    CAS  Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositonal variations in an upper mantle peridotite (Horoman, Hokkaido, Japan). Are they consistent with a partial melting process? Geochim Cosmochim Acta 64:695–716

    Article  CAS  Google Scholar 

  • Tatsumoto M, Hegner E, Unruh DM (1987) Origin of West Maui volcanic rocks inferred from Pb, Sr and Nd isotopes and a multicomponent model for oceanic basalt. US Geol Surv Prof Pap 1350:723–744

    Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+ -Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contrib Mineral Petrol 101:261–273

    CAS  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  CAS  Google Scholar 

  • Watson S, McKenzie D (1991) Melt generation by plumes: a study of Hawaiian volcanism. J Petrol 32:501–537

    CAS  Google Scholar 

  • West HB, Gerlach DC, Leeman WP, Garcia MO (1987) Isotopic constraints on the origin of Hawaiian lavas from the Maui volcano, Hawaii. Nature 330:216–220

    Article  CAS  Google Scholar 

  • White WM, Hofmann AW, Puchelt H (1987) Isotope geochemistry of Pacific mid-ocean ridge basalt. J Geophys Res 92:4881–4893

    CAS  Google Scholar 

  • Williamson DW, Kennedy GC (1969) Melting curve of diopside to 50 kilobars. J Geophys Res 74:4359–4366

    Google Scholar 

  • Woods MT, Lévêque JJ, Okal EA, Cara DA (1991) Two-station measurements of Rayleigh wave group velocity along the Hawaiian swell. J Geophys Res 96:105–108

    Google Scholar 

  • Wright TL (1970) Chemistry of Kilauea and Mauna Loa lava in space and time. US Geol Surv Prof Pap 735

    Google Scholar 

  • Yang H-J, Frey FA, Garcia MO, Clague DA (1994) Submarine lavas from Mauna Kea volcano, Hawaii: implications for Hawaiian shield stage processes. J Geophys Res 99:15577–15594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JM Rhodes kindly provided the major element analyses for the submarine tholeiitic basalts. This work is part of the SUBMAR project supported by the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maaløe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maaløe, S. The PT-phase relations of an MgO-rich Hawaiian tholeiite: the compositions of primary Hawaiian tholeiites. Contrib Mineral Petrol 148, 236–246 (2004). https://doi.org/10.1007/s00410-004-0601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0601-3

Keywords

Navigation