Skip to main content

Advertisement

Log in

Phase transition of zircon at high P-T conditions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In situ observations of the zircon-reidite transition in ZrSiO4 were carried out using a multianvil high-pressure apparatus and synchrotron radiation. The phase boundary between zircon and reidite was determined to be P (GPa) = 8.5+0.0017×(T-1200) (K) for temperatures between 1100–1900 K. When subducted slabs, including igneous rocks and sediments, descend into the upper mantle, the zircon in the subducted slab transforms into reidite at pressures of about 9 GPa, corresponding to a depth of 270 km. Reidite found in an upper Eocene impact ejecta layer in marine sediments is thought to have been transformed from zircon by a shock event. The peak pressure generated by the shock event in this occurrence is estimated to be higher than 8 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Bowring SA, Williams IS, Compston W (1989) 3.96 Ga gneisses from the Slave province, Northwest Territories, Canada. Geology 17:971–975

    Article  CAS  Google Scholar 

  • Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321:767–769

    Google Scholar 

  • Glass BP, Liu S (2001) Discovery of high-pressure ZrSiO4 polymorph in naturally occurring shock-metamorphosed zircons. Geology 29:371–373

    Article  CAS  Google Scholar 

  • Glass BP, Liu S, Leavens PB (2002) Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. Am Mineral 87:562–565

    CAS  Google Scholar 

  • Holmes NC, Moriarty JA, Gathers GR, Nellis, WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66: 2962–2967

    Article  CAS  Google Scholar 

  • Katayama I., Parkinson CD, Okamoto K, Nakajima Y, Maruyama S (2000) Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and politic gneiss from the Kokchetav massif, Kazakhstan. Am Mineral 85:1368–1374

    CAS  Google Scholar 

  • Katayama I., Maruyama S, Parkinson CD, Terada K, Sano Y (2001) Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth Planet Sci Lett 188:185–198

    Article  CAS  Google Scholar 

  • Katsura T, Yamada H, Shinmei T, Kubo A, Ono S, Kanzaki M, Yoneda A, Walter MJ, Urakawa S, Ito E, Funakoshi K, Utsumi W (2003) Post-spinel transition in Mg2SiO4 determined by in situ X-ray diffractometry. Phys Earth Planet Inter 136:11–24

    Article  CAS  Google Scholar 

  • Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, Kubo T, Utsumi W (2004) A large-velume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk.II’. (in press) Phys Earth Planet Inter

  • Knittle E, Williams Q (1993) High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K. Am Mineral 78:245–252

    CAS  Google Scholar 

  • Kusaba K, Syono Y, Kikuchi M, Fukuoka K (1985) Shock behavior of zircon: Phase transition to scheelite structure and decomposition. Earth Planet Sci Lett 72: 433–439

    Article  CAS  Google Scholar 

  • Liu LG (1979) High-pressure phase transformations in baddeleyite and zircon, with geophysical implications. Earth Planet Sci Lett 44:390–396

    Article  CAS  Google Scholar 

  • Mashimo T, Nagayama K, Sawaoka A (1983) Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa. Phys Chem Minerals 9:237–247

    CAS  Google Scholar 

  • Ono S, Ito E, Katsura T, Yoneda A, Walter MJ, Urakawa S, Utsumi W, Funakoshi K (2000) Thermoelastic properties of the high-pressure phase of SnO2 determined by in situ X-ray observations up to 30 GPa and 1400 K. Phys Chem Minerals 27:618-622

    Article  CAS  Google Scholar 

  • Ono S, Katsura T, Ito E, Kanzaki M, Yoneda A, Walter MJ, Urakawa S, Utsumi W, Funakoshi K (2001) In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett 28: 835–838

    Article  CAS  Google Scholar 

  • Ono S, Tange Y, Katayama I, Kikegawa T (2004) Equations of state of ZrSiO4 phases in the upper mantle. Am Mineral 89:185–188.

    CAS  Google Scholar 

  • Pilot J, Werner CD, Haubrich F, Baumann N (1998) Palaeozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature 393:676–679

    Article  CAS  Google Scholar 

  • Reid AF, Ringwood AE (1969) Newly observed high pressure transformations in Mn3O4, CaAl2O4 and ZrSiO4. Earth Planet Sci Lett 6:205–208

    Article  CAS  Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343: 742–746

    CAS  Google Scholar 

  • Tange Y, Takahashi E (2002) Stability of zircon at high-pressure and temperature. Special Issue of the Review of High Pressure Science and Technology 12:50 (Japanese Abstract)

    Google Scholar 

  • Tsuchiya T, Kawamura K (2002) First-principles electronic thermal pressure of metal Au and Pt. Phys Rev B 66: 094115

    Article  Google Scholar 

  • van Westrenen W, Frank MR, Hanchar JM, Fei Y, Finch RJ, Zha C (2004) In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition. Am Mineral 89:197–203

    Google Scholar 

  • Zhang RY, Liou JG, Ernst WG, Coleman RG, Sobolev NV, Shatsky VS (1997) Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. J metamorphic Geol 15:479–496

    CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Takahashi, Y. Tatsumi and M. Handler for help of this project. The synchrotron radiation experiments were performed at the SPring-8, JASRI (Proposal No. 2003A0202-ND2-np). This work was also supported by Ministry of Education, Culture, Sport, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Ono.

Additional information

Editorial responsibility: J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, S., Funakoshi, K., Nakajima, Y. et al. Phase transition of zircon at high P-T conditions. Contrib Mineral Petrol 147, 505–509 (2004). https://doi.org/10.1007/s00410-004-0570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0570-6

Keywords

Navigation