Skip to main content
Log in

Functional coupling of M1 muscarinic acetylcholine receptor to Gαq/11 in dorsolateral prefrontal cortex from patients with psychiatric disorders: a postmortem study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Accumulating studies have implicated intracellular signaling through muscarinic acetylcholine receptors (mAChRs) in psychiatric illness. In the present study, carbamylcholine chloride (carbachol)-induced Gαi/o and Gαq/11 activation was identified in postmortem human prefrontal cortical membranes. The following two sample cohorts were used: subjects [1], consisting of 40 controls without neuropsychiatric disorders, and subjects [2], consisting of 20 with bipolar disorder (BP), 20 major depressive disorder (MDD), 20 schizophrenia, and 20 controls, strictly sex- and age-matched. Carbachol-stimulated [35S]GTPγS binding to human brain membranes was assessed by the two methods, i.e., conventional method using filtration techniques (Gαi/o activation coupled to M2/M4 mAChRs) applied to subjects [1], and [35S]GTPγS binding/immuno precipitation assay (Gαq/11 activation coupled to M1 mAChR) applied to subjects [1] and [2]. The concentration eliciting the half-maximal effect (EC50), maximum percent increase (%Emax), and slope factor were obtained from concentration–response curve of carbachol-induced Gαi/o and Gαq/11 activation. The pEC50 values of both carbachol-induced Gαi/o and Gαq/11 activations in subjects [1] were significantly correlated, though its implications or underlying molecular processes are unclear. The results of M1 mAChR-mediated Gαq/11 activation in subjects [2] indicated no significant disorder-specific alterations. However, the distribution patterns of the pEC50 values showed unequal variances among the groups. There was a significant inverse correlation between the %Emax values and the pEC50 values in subjects with schizophrenia, but not in those with BP or MDD, or controls. These data support the notion that schizophrenia patients consist of biologically heterogeneous subgroups with respect to M1 mAChR-mediated signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caulfield MP, Birdsall NJM (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  PubMed  Google Scholar 

  2. Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136. https://doi.org/10.1016/S0079-6468(05)43004-0

    Article  CAS  PubMed  Google Scholar 

  3. Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    Article  CAS  Google Scholar 

  4. Scarr E (2012) Muscarinic receptors: their roles in disorders of the central nervous system and potential as therapeutic targets. CNS Neurosci Ther 18:369–379. https://doi.org/10.1111/j.1755-5949.2011.00249.x

    Article  CAS  PubMed  Google Scholar 

  5. Readler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246. https://doi.org/10.1038/sj.mp.4001924

    Article  CAS  Google Scholar 

  6. Bymaster FP, McKinzie DL, Felder CC, Wess J (2003) Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437–442

    Article  CAS  Google Scholar 

  7. Jeon WJ, Dean B, Scarr E, Gibbons A (2015) The role of muscarinic receptors in the pathophysiology of mood disorders: a potential novel treatment? Curr Neuropharmacol 13:739–749

    Article  CAS  Google Scholar 

  8. Scarr E (2009) Muscarinic receptors in psychiatric disorders––can we mimic 'health'? Neurosignals 17:298–310. https://doi.org/10.1159/000231896

    Article  CAS  PubMed  Google Scholar 

  9. Bennett JP Jr, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 36:927–934

    Article  CAS  Google Scholar 

  10. Toru M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Mitsushio H, Ichikawa H, Kunugi A, Takashima M, Mataga N, Ogawa A (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78:121–137

    Article  CAS  Google Scholar 

  11. Watanabe S, Nishikawa T, Takashima M, Toru M (1983) Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics. Life Sci 33:2187–2196

    Article  CAS  Google Scholar 

  12. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    Article  CAS  Google Scholar 

  13. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2001) Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 158:918–925. https://doi.org/10.1176/appi.ajp.158.6.918

    Article  CAS  PubMed  Google Scholar 

  14. Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL (1996) The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1:54–58

    CAS  PubMed  Google Scholar 

  15. Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    Article  CAS  Google Scholar 

  16. Deng C, Huang XF (2005) Decreased density of muscarinic receptors in the superior temporal gyrus in schizophrenia. J Neurosci Res 15:883–890. https://doi.org/10.1002/jnr.20600

    Article  CAS  Google Scholar 

  17. Gibbons AS, Scarr E, McLean C, Sundram S, Dean B (2009) Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects. J Affect Disord 116:184–191. https://doi.org/10.1016/j.jad.2008.11.015

    Article  CAS  PubMed  Google Scholar 

  18. Gibbons AS, Scarr E, Boer S, Money T, Jeon WJ, Felder C, Dean B (2013) Widespread decreases in cortical muscarinic receptors in a subset of people with schizophrenia. Int J Neuropsychopharmacol 16:37–46. https://doi.org/10.1017/S1461145712000028

    Article  CAS  PubMed  Google Scholar 

  19. Scarr E, Sundram S, Keriakous D, Dean B (2007) Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry 61:1161–1170. https://doi.org/10.1016/j.biopsych.2006.08.050

    Article  CAS  PubMed  Google Scholar 

  20. Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B (2009) Decreased cortical muscarinic receptor define a subgroup of subjects with schizophrenia. Mol Psychiatry 14:1017–1023. https://doi.org/10.1038/mp.2008.28

    Article  CAS  PubMed  Google Scholar 

  21. Zavitsanou K, Katsifis A, Mattner F, Huang XF (2004) Investigation of M1/M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625. https://doi.org/10.1038/sj.npp.1300367

    Article  CAS  PubMed  Google Scholar 

  22. Crook JM, Dean B, Pavey G, Copolov D (1999) The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci. 64:1761–1771

    Article  CAS  Google Scholar 

  23. Gibbons AS, Jeon WJ, Scarr E, Dean B (2016) Changes in muscarinic M2 receptor levels in the cortex of subjects with bipolar disorder and major depressive disorder and in rats after treatment with mood stabilizers and antidepressants. Int J Neuropsychopharmacol 19:118. https://doi.org/10.1093/ijnp/pyv118

    Article  CAS  Google Scholar 

  24. Zavitsanou K, Katsifis A, Yu Y, Huang XF (2005) M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 65:397–403. https://doi.org/10.1016/j.brainresbull.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  25. Jeon WJ, Gibbons AS, Dean B (2013) The use of a modified [3H]4-DAMP radioligand binding assay with increased selectivity for muscarinic M3 receptor shows that cortical CHRM3 levels are not altered in mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 47:7–12. https://doi.org/10.1016/j.pnpbp.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Salah-Uddin H, Scarr E, Pavey G, Harris K, Hagan JJ, Dean B, Challiss RA, Watson JM (2009) Altered M1 muscarinic acetylcholine receptor (CHRM1)-Gαq/11 coupling in a schizophrenia endophenotype. Neuropsychopharmacology 34:2156–2166. https://doi.org/10.1038/npp.2009.41

    Article  CAS  PubMed  Google Scholar 

  27. Salah-Uddin H, Thomas DR, Davies CH, Hagan JJ, Wood MD, Watson JM, Challiss RA (2008) Pharmacological assessment of M1 muscarinic acetylcholine receptor-Gq/11 protein coupling in membranes prepared from postmortem human brain tissue. J Pharmacol Exp Ther 325:869–874. https://doi.org/10.1124/jpet.108.137968

    Article  CAS  PubMed  Google Scholar 

  28. Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, García-Sevilla JA (2017) Functional activation of Gαq coupled to 5-HT2A receptor and M1 muscarinic acetylcholine receptor in postmortem human cortical membranes. J Neural Transm 124:1123–1133. https://doi.org/10.1007/s00702-017-1749-0

    Article  CAS  PubMed  Google Scholar 

  29. Odagaki Y (2019) Guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding/immunoprecipitation assay using magnetic beads coated with anti-Gα antibody in mammalian brain membranes. In: Odagaki Y, Borroto-Escuela DO (eds) Co-immunoprecipitation methods for brain tissue neuromethods, vol 144. Springer Nature, New York, pp 97–108

    Chapter  Google Scholar 

  30. Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, García-Sevilla JA (2015) Adenosine A1 receptors are selectively coupled to Gαi-3 in postmortem human brain cortex: guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding/immunoprecipitation study. Eur J Pharmacol 764:592–598. https://doi.org/10.1016/j.ejphar.2015.07.049

    Article  CAS  PubMed  Google Scholar 

  31. Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, García-Sevilla JA (2019) Optimization and pharmacological characterization of receptor-mediated Gi/o activation in postmortem human prefrontal cortex. Basic Clin Pharmacol Toxicol 124:649–659. https://doi.org/10.1111/bcpt.13183

    Article  CAS  PubMed  Google Scholar 

  32. Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2:531–536

    Article  Google Scholar 

  33. Tripathi A, Kar SK, Shukla R (2018) Cognitive deficits in schizophrenia: understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci 16:7–17. https://doi.org/10.9758/cpn.2018.16.1.7

    Article  PubMed  PubMed Central  Google Scholar 

  34. MacQueen GM, Memedovich KA (2017) Cognitive dysfunction in major depression and bipolar disorder: assessment and treatment options. Psychiatry Clin Neurosci 71:18–27. https://doi.org/10.1111/pcn.12463

    Article  PubMed  Google Scholar 

  35. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    Article  CAS  Google Scholar 

  36. Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA (1994) Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63:207–221

    Article  CAS  Google Scholar 

  37. Mysliveček J, Kvetňanský R (2006) The effects of stress on muscarinic receptors. Heterologous receptor regulation: yes or no? Auton Autacoid Pharmacol 26:235–251

    Article  Google Scholar 

  38. van Koppen CJ, Kaiser B (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98:197–220

    Article  Google Scholar 

  39. Quitterer U, Lohse MJ (1999) Crosstalk between Gαi- and Gαq-coupled receptors is mediated by Gβγ exchange. Proc Natl Acad Sci USA 96:10626–10631

    Article  CAS  Google Scholar 

  40. Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J, Rollis D, Drevets M, Gandhi S, Solorio G, Drevets WC (2006) Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 63:741–747

    Article  CAS  Google Scholar 

  41. Friedman E, Wang HY (1996) Receptor-mediated activation of G proteins is increased in postmortem brains of bipolar affective disorder subjects. J Neurochem 67:1145–1152

    Article  CAS  Google Scholar 

  42. Avissar S, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331:440–442

    Article  CAS  Google Scholar 

  43. Avissar S, Schreiber G (1992) Ziskind-Somerfeld research Award. The involvement of guanine nucleotide binding proteins in the pathogenesis and treatment of affective disorders. Biol Psychiatry 31:435–459

    Article  CAS  Google Scholar 

  44. Avissar S, Schreiber G (2002) Toward molecular diagnostics of mood disorders in psychiatry. Trends Mol Med 8:294–300

    Article  CAS  Google Scholar 

  45. Schreiber G, Avissar S (1991) Lithium sensitive G protein hyperfunction: a dynamic model for the pathogenesis of bipolar affective disorder. Med Hypotheses 35:237–243

    Article  CAS  Google Scholar 

  46. Odagaki Y (2005) Transmembrane signal transduction via G proteins implicated in affective disorders. In: Brown MR (ed) Focus on bipolar disorder research. Nova Science Publishers, New York, pp 75–112

    Google Scholar 

  47. González-Maeso J, Meana JJ (2006) Heterotrimeric G proteins: insights into the neurobiology of mood disorders. Curr Neuropharmacol 4:127–138

    Article  Google Scholar 

  48. Odagaki Y, Nishi N, Koyama T (1997) Lack of interfering effects of lithium on receptor/G protein coupling in human platelet and rat brain membranes. Biol Psychiatry 42:697–703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Saitama Medical University Internal Grant 18-B-1–03 to Y.O., the Spanish MINECO‐FEDER (SAF 2017‐88126R, SAF 2013‐48586‐R and 2011‐29918 to J.J.M., L.F.C. and J.A.G‐S., respectively) and the Basque Government (IT‐616‐13). The authors thank the collaboration of the staff members of the Basque Institute of Legal Medicine. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Odagaki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odagaki, Y., Kinoshita, M., Meana, J.J. et al. Functional coupling of M1 muscarinic acetylcholine receptor to Gαq/11 in dorsolateral prefrontal cortex from patients with psychiatric disorders: a postmortem study. Eur Arch Psychiatry Clin Neurosci 270, 869–880 (2020). https://doi.org/10.1007/s00406-019-01088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-019-01088-9

Keywords

Navigation