Skip to main content
Log in

Dysfunctional pain modulation in somatoform pain disorder patients

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 13 November 2010

Abstract

To date, pain perception is thought to be a creative process of modulation carried out by an interplay of pro- and anti-nociceptive mechanisms. Recent research demonstrates that pain experience constitutes the result of top–down processes represented in cortical descending pain modulation. Cortical, mainly medial and frontal areas, as well as subcortical structures such as the brain stem, medulla and thalamus seem to be key players in pain modulation. An imbalance of pro- and anti-nociceptive mechanisms are assumed to cause chronic pain disorders, which are associated with spontaneous pain perception without physiologic scaffolding or exaggerated cortical activation in response to pain exposure. In contrast to recent investigations, the aim of the present study was to elucidate cortical activation of somatoform pain disorder patients during baseline condition. Scalp EEG, quantitative Fourier-spectral analyses and LORETA were employed to compare patient group (N = 15) to age- and sex-matched controls (N = 15) at rest. SI, SII, ACC, SMA, PFC, PPC, insular, amygdale and hippocampus displayed significant spectral power reductions within the beta band range (12–30 Hz). These results suggest decreased cortical baseline arousal in somatoform pain disorder patients. We finally conclude that obtained results may point to an altered baseline activity, maybe characteristic for chronic somatoform pain disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EEG:

Electroencephalogram

BA:

Brodman area

rCBF:

Regional cerebral blood flow

SMA:

Supplementary motor area

PPC:

Posterior parietal cortex

PFC:

Prefrontal cortex

SI:

Primary somatosensory cortex

SII:

Secondary somatosensory cortex

ACC:

Anterior cingulate cortex

rACC:

Rostral anterior cingulate cortex

PAG:

Periaqueductal grey

AI:

Anterior insula

CBP:

Chronic back pain patients

IBS:

Irritable bowel syndrome

GI:

Gastrointestinal

EOG:

Electrooculogram

ICA:

Independent component analysis

References

  1. Anderer P, Saletu B, Kinsperger K, Semlitsch H (1987) Topographic brain mapping of EEG in neuropsychopharmacology–part I. Methodological aspects. Meth Find Expt Clin Pharmacol 9(6):371–384

    CAS  Google Scholar 

  2. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173

    Article  PubMed  CAS  Google Scholar 

  3. Bingel U, Lorenz J, Schoell E, Weiller C, Büchel C (2005) Mechanisms of placebo analgesia: rACC recruitment of a subcortical anti-nociceptive network. Pain 120:8–15

    Article  PubMed  Google Scholar 

  4. Bingel U, Schoell E, Büchel C (2007) Imaging pain modulation in health and disease. Curr Opin Neurol 20:424–431

    Article  PubMed  Google Scholar 

  5. Bingel U, Schoell E, Herken W, Büchel C (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131:21–30

    Article  PubMed  CAS  Google Scholar 

  6. Birbaumer N, Schmidt F (2003) Biologische Psychologie. Springer, Berlin

    Google Scholar 

  7. Brand S, Gerber M, Pühse U, Holsboer-Trachsler E (2009) The relation between sleep and pain among a non-clinical sample of young adults. Eur Arch Psychiatry Clin Neurosci, 2010 March 31 (Epub ahead of print)

  8. Casey KL, Lorenz J, Minoshima S (2003) Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol 184(Suppl 1):S80–S88

    Article  PubMed  Google Scholar 

  9. Chang L (2005) Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am 34(2):271–279

    Article  PubMed  Google Scholar 

  10. de Charms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Doneji D, Gabrieli JDE, Mackey SC (2005) Control over brain activation and pain learned by using real-time functional MRI. PNAS 102(51):18626–18631

    Article  Google Scholar 

  11. Derbyshire SW, Whalley MG, Stenger VA, Oakley DA (2004) Cerebral activation during hypnotically and imagined pain. NeuroImage 23:392–401

    Article  PubMed  Google Scholar 

  12. Dilling H, Mombour W, Schmidt H (2005) Internationale Klassifikation psychischer Störungen ICD-10 Kapitel V(F), 5. durchgesehene und ergänzte Auflage. Hans Huber

  13. Fields HL (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 122:245–253

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Campayo J, Fayed N, Serrano-Blanco A, Roca M (2009) Brain dysfunction behind functional symptoms. Neuroimaging and somatoform, conversive, and dissociative disorders. Curr Opin Psychiatry 22:224–231

    Article  PubMed  Google Scholar 

  15. Garcia-Campayo J, Magdalena J, Magallon R, Fernandez-Garcia, Salas M, Andres E (2008) A meta-analysis of the efficacy of fibromyalgia treatment according to level of care. Arthritis Res Ther 10(R81)

  16. Gracely RH, Geisser ME, Giesecke T, Grant MA, Petzke F, Williams DA, Clauw DJ (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127(Pt 4):835–843

    Article  PubMed  CAS  Google Scholar 

  17. Hegerl U, Stein M, Mulert C, Mergl R, Olbrich S, Dichgans E, Rujescu D, Pogarell O (2008) EEG-vigilance differences between patients with borderline personality disorder, patients with obsessive-compulsive disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci 258:137–143

    Article  PubMed  Google Scholar 

  18. Jensen M, Grierson C, Tracy-Smith V, Bacigalupi S, Othmer S (2007) Neurofeedback treatment for pain associated with complex regional pain syndrome type I. J Neurother 11(1)

  19. Linden DEJ (2008) Brain imaging and psychotherapy: methodological considerations and practical implications. Eur Arch Psychiatry Clin Neurosci 258(Suppl 5):71–75

    Article  PubMed  Google Scholar 

  20. May A (2007) Neuroimaging: visualising the brain in pain. Neurol Sci 28(Suppl 2):101–107

    Article  Google Scholar 

  21. Mease PJ (2009) Further strategies for treating fibromyalgia: the role of serotonin and norepinephrine reuptake inhibitors. Am J Med 122(Suppl 12):44–55

    Google Scholar 

  22. Moisett X, Bouhassira D (2007) Brain imaging in neuropathic pain. NeuroImage 37:80–88

    Article  Google Scholar 

  23. Moore RA, Straube S, Wiffen PJ, Derry S, McQuay HJ (2009) Pregabalin for acute and chronic pain in adults. Cochrane Database Syst Rev 8(3):CD007076

    Google Scholar 

  24. Nunez P, Silberstein B (2000) On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr 13(2)

  25. Peters ML, Schmidt AJ, Hout MA (1989) Chronic low back pain and the reaction to repeated acute pain stimulation. Pain 39:69–76

    Article  PubMed  CAS  Google Scholar 

  26. Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85(1–2):19–30

    Article  PubMed  CAS  Google Scholar 

  27. Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia: imaging a shared neuronal network. Science 295:1737–1740

    Article  PubMed  CAS  Google Scholar 

  28. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30:263–288

    Article  PubMed  CAS  Google Scholar 

  29. Rosen R, Buckner R, Dale A (1998) Event-related functional MRI: past, present, and future. Natl Acad Sci USA 95:773–780

    Article  CAS  Google Scholar 

  30. Saletu B, Anderer P, Saletu-Zyhlarz GM, Pascual-Marqui RD (2005) EEG mapping and low-resolution brain electromagnetic tomography (LORETA) in diagnosis and therapy of psychiatric disorders: evidence for a key-lock principle. Clin EEG Neurosci 36(2):108–115

    PubMed  Google Scholar 

  31. Saletu B, Krizjer F, Ferber G, Anderer P (2000) Electrophysiological brain Research in preclinical and clinical pharmacology and related fields—an update. Faculas Universitätsverlag Vienna

  32. Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–64

    Article  PubMed  Google Scholar 

  33. Sarnthein J, Jeanmonod D (2008) High thalamocortical theta coherence in patients with neurogenic pain. NeuroImage 39:1910–1917

    Article  PubMed  Google Scholar 

  34. Schmidt-Wilcke T, Leinisch E, Ganssbauer S, Draganski B, Bogdahn U, Altmeppen J, May A (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125(1–2):89–97

    Article  PubMed  CAS  Google Scholar 

  35. Schneider F, Backes V, Mathiak K (2009) Brain imaging: on the way toward a therapeutic discipline. Eur Arch Psychiatry Clin Neurosci 259(Suppl 2):S143–S147

    Google Scholar 

  36. Schnitzler A, Ploner M (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17(6):592–603

    Article  PubMed  CAS  Google Scholar 

  37. Schulman J, Zonenshayn M, Ramirez R, Ribary U, Llinas R (2005) Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus Relat Syst 3:33–39

    Article  Google Scholar 

  38. Stern J, Jeanmonod D, Sarnthein J (2006) Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. NeuroImage 31:721–731

    Article  PubMed  Google Scholar 

  39. Wilder-Smith CJ, Schindler D, Lovblad K (2004) Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 35:1595–1601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klug Stefanie.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00406-010-0168-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanie, K., Peter, A., Gerda, SZ. et al. Dysfunctional pain modulation in somatoform pain disorder patients. Eur Arch Psychiatry Clin Neurosci 261, 267–275 (2011). https://doi.org/10.1007/s00406-010-0148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-010-0148-4

Keywords

Navigation