Skip to main content
Log in

Detection of microplastics in patients with allergic rhinitis

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 21 December 2023

Abstract

Objective

We aimed to investigate the relationship between microplastics, which are a worldwide health and environmental issue, and their relationship to allergic rhinitis.

Materials and methods

A total of 66 patients participated in this prospective study. The patients were divided into two groups. While there were 36 patients with allergic rhinitis in group 1, there were 30 healthy volunteers in group 2. The participants’ age, gender and Score for Allergic Rhinitis results were noted. Microplastics were examined in the nasal lavage fluids of the patients and their numbers noted. The groups were compared on these values.

Results

There was no significant difference between the groups in terms of age and gender. There was a significant difference between the allergic rhinitis group and the control group in terms of the Score for Allergic Rhinitis results (p < 0.001). In the allergic rhinitis group, the microplastic density in the nasal lavage was significantly higher than in the control group (p = 0.027). Microplastics were detected in all participants.

Conclusions

We found more microplastics in allergic rhinitis patients. According to this result, we can say that there is a relationship between allergic rhinitis and microplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neves D, Sobral P, Ferreira JL, Pereira T (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull 101(1):119–126. https://doi.org/10.1016/j.marpolbul.2015.11.008. (Epub 2015 Nov 19, PMID: 26608506)

    Article  CAS  PubMed  Google Scholar 

  2. Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P (2015) Microplastic pollution in table salts from China. Environ Sci Technol 49(22):13622–13627. https://doi.org/10.1021/acs.est.5b03163. (Epub 2015 Nov 2, PMID: 26486565)

    Article  CAS  PubMed  Google Scholar 

  3. Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, Rio-Echevarria IM, Van den Eede G (2019) Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36(5):639–673. https://doi.org/10.1080/19440049.2019.1583381. (Epub 2019 Apr 15, PMID: 30985273)

    Article  CAS  PubMed  Google Scholar 

  4. Guo JJ, Huang XP, Xiang L, Wang YZ, Li YW, Li H, Cai QY, Mo CH, Wong MH (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263. (Epub 2020 Feb 19, PMID: 32087481)

    Article  CAS  PubMed  Google Scholar 

  5. Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, D’Amore E, Rinaldo D, Matta M, Giorgini E (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int 146:106274. https://doi.org/10.1016/j.envint.2020.106274. (Epub 2020 Dec 2, PMID: 33395930)

    Article  CAS  PubMed  Google Scholar 

  6. Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S, Hamzah SR, Ismail D, Ma ZF, Dzulkarnaen A, Zakaria Z, Mustaffa N, Tuan Sharif SE, Lee YY (2020) Detection of microplastics in human colectomy specimens. JGH Open 5(1):116–121. https://doi.org/10.1002/jgh3.12457. (PMID: 33490620; PMCID: PMC7812470)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126. https://doi.org/10.1016/j.envpol.2017.11.043. (Epub 2017 Dec 21, PMID: 29172041)

    Article  CAS  PubMed  Google Scholar 

  8. Huang J, Dong G, Liang M, Wu X, Xian M, An Y, Zhan J, Xu L, Xu J, Sun W, Chen S, Chen C, Liu T (2022) Toxicity of micro(nano)plastics with different size and surface charge on human nasal epithelial cells and rats via intranasal exposure. Chemosphere 307(Pt 4):136093. https://doi.org/10.1016/j.chemosphere.2022.136093. (Epub 2022 Aug 24, PMID: 36029863)

    Article  CAS  PubMed  Google Scholar 

  9. Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Li Y, Zhang H (2019) Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ 694:133794. https://doi.org/10.1016/j.scitotenv.2019.133794. (Epub 2019 Aug 5, PMID: 31756791)

    Article  CAS  PubMed  Google Scholar 

  10. Kim DH, Han K, Kim SW (2016) relationship between allergic rhinitis and mental health in the general Korean adult population. Allergy Asthma Immunol Res 8(1):49–54. https://doi.org/10.4168/aair.2016.8.1.49. (PMID: 26540501; PMCID: PMC4695408)

    Article  PubMed  Google Scholar 

  11. Cingi C, Songu M, Ural A, Annesi-Maesano I, Erdogmus N, Bal C, Kahya V, Koc EA, Cakir BO, Selcuk A, Ozlugedik S, Onal K, Midilli R, Ecevit C, Pinar E, Akoglu E, Okuyucu S, Erkan AN (2011) The score for allergic rhinitis study in Turkey. Am J Rhinol Allergy 25(5):333–337. https://doi.org/10.2500/ajra.2011.25.3665. (PMID: 22186248)

    Article  PubMed  Google Scholar 

  12. Meltzer EO (2016) Allergic rhinitis: burden of illness, quality of life, comorbidities, and control. Immunol Allergy Clin North Am 36(2):235–248. https://doi.org/10.1016/j.iac.2015.12.002. (Epub 2016 Mar 4, PMID: 27083099)

    Article  PubMed  Google Scholar 

  13. Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(12):2136–2140. https://doi.org/10.1080/19440049.2013.843025. (Epub 2013 Oct 28, PMID: 24160778)

    Article  CAS  PubMed  Google Scholar 

  14. Rochman CM, Cook AM, Koelmans AA (2016) Plastic debris and policy: using current scientific understanding to invoke positive change. Environ Toxicol Chem 35(7):1617–1626. https://doi.org/10.1002/etc.3408. (PMID: 27331654)

    Article  CAS  PubMed  Google Scholar 

  15. Vethaak AD, Legler J (2021) Microplastics and human health. Science 371(6530):672–674. https://doi.org/10.1126/science.abe5041. (PMID: 33574197)

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Y, Han J, Na J, Fang J, Qi C, Lu J, Liu X, Zhou C, Feng J, Zhu W, Liu L, Jiang H, Hua Z, Pan G, Yan L, Sun W, Yang Z (2022) Exposure to microplastics in the upper respiratory tract of indoor and outdoor workers. Chemosphere 307(Pt 3):136067. https://doi.org/10.1016/j.chemosphere.2022.136067. (Epub 2022 Aug 17, PMID: 35987269)

    Article  CAS  PubMed  Google Scholar 

  17. Vianello A, Jensen RL, Liu L, Vollertsen J (2019) Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep 9(1):8670. https://doi.org/10.1038/s41598-019-45054-w. (PMID:31209244; PMCID:PMC6573036)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yee MS, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, Tan BK, Wong CY, Leong CO (2021) Impact of microplastics and nanoplastics on human health. Nanomaterials (Basel) 11(2):496. https://doi.org/10.3390/nano11020496. (PMID:33669327; PMCID:PMC7920297)

    Article  CAS  PubMed  Google Scholar 

  19. Hollóczki O, Gehrke S (2020) Can nanoplastics alter cell membranes? ChemPhysChem 21(1):9–12. https://doi.org/10.1002/cphc.201900481. (Epub 2019 Sep 16, PMID: 31483076; PMCID: PMC6973106)

    Article  CAS  PubMed  Google Scholar 

  20. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455. (Epub 2019 Oct 4, PMID: 31733547)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Wang H, Peng S, Kang J, Xie Z, Tang R, Xing Y, He Y, Yuan H, Xie C, Liu Y (2022) Effect of microplastics on nasal and intestinal microbiota of the high-exposure population. Front Public Health 28(10):1005535. https://doi.org/10.3389/fpubh.2022.1005535. (PMID:36388272; PMCID:PMC9650105)

    Article  Google Scholar 

Download references

Funding

The authors declare that this article did not receive any fnancial support during the research and authorship process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Tuna.

Ethics declarations

Conflict of interest

The authors declare that there was no confict of interest during the preparation and publication of this article.

Ethical approval

This study was carried out with the ethics committee approval of Kırıkkale University Scientific Research and Publication Ethics Committee (Decision No: 03/01, 16/02/2023).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuna, A., Taş, B.M., Başaran Kankılıç, G. et al. Detection of microplastics in patients with allergic rhinitis. Eur Arch Otorhinolaryngol 280, 5363–5367 (2023). https://doi.org/10.1007/s00405-023-08105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08105-7

Keywords

Navigation