Skip to main content
Log in

Prognostic value of a microRNA-pair signature in laryngeal squamous cell carcinoma patients

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Predicting the prognosis in laryngeal squamous cell carcinoma (LSCC) patients will improve clinical decision-making. Here, we aimed to identify a qualitative signature based on the within-sample relative expression orderings (REOs) of microRNA (miRNA) pairs to predict the overall survival (OS) of LSCC patients.

Methods

First, we constructed non-repeating miRNA pairs based on differentially expressed miRNAs (DEmiRNAs) between LSCC and normal tissues. Then, we applied a bootstrap-based feature selection method to identify a robust miRNA-pair signature. The bootstrap-based feature selection improved the stability of feature selection by an ensemble based on the data perturbation. Furthermore, a series of bioinformatics analyses were carried out to explore the potential mechanisms of the signature and potential drug targets for LSCC.

Results

Based on the REOs of miRNA pairs, we identified a qualitative signature that consisted of 12 miRNA pairs. The constructed signature has good performance in predicting the OS of LSCC patients. It is robust against batch effects and more suitable for individual clinical applications. Furthermore, we identified several hub genes that may be potential drug targets for LSCC.

Conclusion

Overall, our findings provided a promising signature for predicting the OS of LSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets of this article are available in the TCGA database.

References

  1. Genden EM, Ferlito A, Silver CE, Jacobson AS, Werner JA, Suarez C, Leemans CR, Bradley PJ, Rinaldo A (2007) Evolution of the management of laryngeal cancer. Oral Oncol 43(5):431–439. https://doi.org/10.1016/j.oraloncology.2006.08.007

    Article  PubMed  Google Scholar 

  2. Obid R, Redlich M, Tomeh C (2019) The treatment of laryngeal cancer. Oral Maxillofac Surg Clin North Am 31(1):1–11. https://doi.org/10.1016/j.coms.2018.09.001

    Article  PubMed  Google Scholar 

  3. Spector ME, Rosko AJ, Birkeland AC (2018) Challenges in addressing early stage laryngeal squamous cell carcinoma. Transl Cancer Res 7(6):1338–1340. https://doi.org/10.21037/tcr.2018.09.10

    Article  Google Scholar 

  4. Marioni G, Marchese-Ragona R, Cartei G, Marchese F, Staffieri A (2006) Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat Rev 32(7):504–515. https://doi.org/10.1016/j.ctrv.2006.07.002

    Article  PubMed  Google Scholar 

  5. Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF (2017) An update on larynx cancer. CA Cancer J Clin 67(1):31–50. https://doi.org/10.3322/caac.21386

    Article  PubMed  Google Scholar 

  6. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14. https://doi.org/10.1016/j.addr.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179. https://doi.org/10.1146/annurev.med.59.053006.104707

    Article  CAS  PubMed  Google Scholar 

  8. Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223(2):102–115. https://doi.org/10.1002/path.2806

    Article  CAS  PubMed  Google Scholar 

  9. Tian L, Zhang J, Ge J, Xiao H, Lu J, Fu S, Liu M, Sun Y (2014) MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma. Med Oncol 31(1):1–10. https://doi.org/10.1007/s12032-013-0785-3

    Article  CAS  Google Scholar 

  10. Shen Z, Zhan G, Ye D, Ren Y, Cheng L, Wu Z, Guo J (2012) MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med Oncol 29(4):2473–2480. https://doi.org/10.1007/s12032-011-0156-x

    Article  CAS  PubMed  Google Scholar 

  11. Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D (2013) Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS ONE 8(8):e70429. https://doi.org/10.1371/journal.pone.0070429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong S, Xu M, Zhang Y, Shan Y, Zhang H (2020) The prognostic signature and potential target genes of six long non-coding RNA in laryngeal squamous cell carcinoma. Front Genet 11:413. https://doi.org/10.3389/fgene.2020.00413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geman D, d’Avignon C, Naiman DQ, Winslow RL (2004) Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1071

    Article  PubMed  Google Scholar 

  14. Gulgezen G, Cataltepe Z, Yu L (2009) Stable and accurate feature selection. In: Joint European conference on machine learning and knowledge discovery in databases. Springer

  15. He Z, Yu W (2010) Stable feature selection for biomarker discovery. Comput Biol Chem 34(4):215–225. https://doi.org/10.1016/j.compbiolchem.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  16. Student S, Fujarewicz K (2012) Stable feature selection and classification algorithms for multiclass microarray data. Biol Direct 7(1):1–20. https://doi.org/10.1186/1745-6150-7-33

    Article  Google Scholar 

  17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stel VS, Dekker FW, Tripepi G, Zoccali C, Jager KJ (2011) Survival analysis I: the Kaplan–Meier method. Nephron Clin Pract 119(1):c83–c88. https://doi.org/10.1159/000324758

    Article  PubMed  Google Scholar 

  19. Dietrich S, Floegel A, Troll M, Kühn T, Rathmann W, Peters A, Sookthai D, Von Bergen M, Kaaks R, Adamski J (2016) Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis. Int J Epidemiol 45(5):1406–1420. https://doi.org/10.1093/ije/dyw145

    Article  PubMed  Google Scholar 

  20. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16(4):385–395. https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  21. Kleinbaum DG, Klein M (2012) Kaplan–Meier survival curves and the log-rank test. Survival analysis. Springer

    Chapter  Google Scholar 

  22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guan Q, Chen R, Yan H, Cai H, Guo Y, Li M, Li X, Tong M, Ao L, Li H (2016) Differential expression analysis for individual cancer samples based on robust within-sample relative gene expression orderings across multiple profiling platforms. Oncotarget 7(42):68909. https://doi.org/10.18632/oncotarget.11996

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheng J, Guo Y, Gao Q, Li H, Yan H, Li M, Cai H, Zheng W, Li X, Jiang W (2017) Circumvent the uncertainty in the applications of transcriptional signatures to tumor tissues sampled from different tumor sites. Oncotarget 8(18):30265. https://doi.org/10.18632/oncotarget.15754

    Article  PubMed  PubMed Central  Google Scholar 

  26. Charette DM, Marabelle A, Houot R (2016) Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur J Cancer 68:134–147. https://doi.org/10.1016/j.ejca.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  27. Lee MY, Jeon JW, Sievers C, Allen CT (2020) Antigen processing and presentation in cancer immunotherapy. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001111

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang S, He Z, Wang X, Li H, Liu X-S (2019) Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. Elife 8:e49020. https://doi.org/10.7554/eLife.49020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691. https://doi.org/10.1038/sj.onc.1209377

    Article  CAS  PubMed  Google Scholar 

  30. Mittal B, Tulsyan S, Kumar S, Mittal RD, Agarwal G (2015) Cytochrome P450 in cancer susceptibility and treatment. Adv Clin Chem 71:77–139. https://doi.org/10.1016/bs.acc.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  31. Noël A (2012) New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol 3:140. https://doi.org/10.3389/fphar.2012.00140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the TCGA database for providing their platforms and contributors for uploading their meaningful datasets.

Funding

This study is funded by Sanming Project of Medicine in Shenzhen (SZSM201812062 and SZSM201612097).

Author information

Authors and Affiliations

Authors

Contributions

SZ conceived and designed the study. SZ performed the computations. SZ, QM and ZW wrote the manuscript. All the authors contributed to the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 563 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Meng, Q. & Wang, Z. Prognostic value of a microRNA-pair signature in laryngeal squamous cell carcinoma patients. Eur Arch Otorhinolaryngol 279, 4451–4460 (2022). https://doi.org/10.1007/s00405-022-07404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07404-9

Keywords

Navigation