Skip to main content

Advertisement

Log in

How we improve the transoral resection for oral and oropharyngeal cancer: the CO2 waveguide laser

  • Head & Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

The main aim of this study was to evaluate the CO2 waveguide laser (CO2 WGL) with flexible fiber (Lumenis, Santa Clara, CA) in the treatment of oral and oropharyngeal cancers specifically focusing on the lateral thermal damage (LTD) induced by this instrument and therefore on the reliability of the analysis of frozen sections collected during margin mapping.

Methods

A total of 48 patients with oral and oropharyngeal cancers from T1 to T4a were prospectively enrolled in the study. We collected data about LTD, pathologic tumor and node stage (pTNM), surgical intervention, kind of reconstruction (no flap, local vs free flap), need for tracheotomy and time of removal, postoperative complications (such as bleeding, mucosal dehiscence, and fistula), need for feeding tube and time of removal.

Results

Mean LTD was 164.7 ± 92.4 μm. Comparing frozen section histology before and after formalin embedding we found 5 true positives, 170 true negatives, 4 false positives and 4 false negatives, with a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 55.6%, 98%, 55.6%, 98%, and 96.1%, respectively.

Conclusion

CO2 WGL is a very manageable tool, which allows a precise cut. However, its high costs, the inability to re-use the fibers and its low coagulation capability must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tirelli G, Boscolo Nata F, Piovesana M, Quatela E, Gardenal N, Hayden RE (2018) Transoral surgery (TOS) in oropharyngeal cancer: different tools, a single mini-invasive philosophy. Surg Oncol 27:643–649. https://doi.org/10.1016/j.suronc.2018.08.003

    Article  PubMed  Google Scholar 

  2. Tirelli G, Zacchigna S, Boscolo Nata F, Quatela E, Di Lenarda R, Piovesana M (2017) Will the mininvasive approach challenge the old paradigms in oral cancer surgery? Eur Arch Otorhinolaryngol 274:1279–1289. https://doi.org/10.1007/s00405-016-4221-0

    Article  CAS  PubMed  Google Scholar 

  3. Gobbo M, Bullo F, Perinetti G, Gatto A, Ottaviani G, Biasotto M, Tirelli G (2016) Diagnostic and therapeutic features associated with modification of quality-of-life’s outcomes between one and six months after major surgery for head and neck cancer. Braz J Otorhinolaryngol 82:548–557. https://doi.org/10.1016/j.bjorl.2015.10.013

    Article  PubMed  Google Scholar 

  4. Hinni ML, Ferlito A, Brandwein-Gensler MS et al (2013) Surgical margins in head and neck cancer: a contemporary review. Head Neck 35:1362–1370. https://doi.org/10.1002/hed.23110

    Article  PubMed  Google Scholar 

  5. Steiner W (1993) Results of curative laser microsurgery of laryngeal carcinomas. Am J Otolaryngol 14:116–121

    Article  CAS  PubMed  Google Scholar 

  6. Shurgalin M, Anastassiou C (2008) A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers. Biomed Instrum Technol 42:318–325. https://doi.org/10.2345/0899-8205(2008)42%5b318:ANMFMI%5d2.0.CO;2

    Article  PubMed  Google Scholar 

  7. Tirelli G, Marcuzzo AV, Boscolo Nata F (2018) Narrow-band imaging pattern classification in oral cavity. Oral Dis 24:1458–1467. https://doi.org/10.1111/odi.12940

    Article  PubMed  Google Scholar 

  8. Piazza C, Del Bon F, Paderno A et al (2016) The diagnostic value of narrow band imaging in different oral and oropharyngeal subsites. Eur Arch Otorhinolaryngol 273:3347–3353. https://doi.org/10.1007/s00405-016-3925-5

    Article  PubMed  Google Scholar 

  9. https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf. Accessed 5 Jan 2019

  10. Tirelli G, Piovesana M, Gatto A, Tofanelli M, Biasotto M, Boscolo Nata F (2015) Narrow band imaging in the intra-operative definition of resection margins in oral cavity and oropharyngeal cancer. Oral Oncol 51:908–913. https://doi.org/10.1016/j.oraloncology.2015.07.005

    Article  PubMed  Google Scholar 

  11. Tirelli G, Piovesana M, Marcuzzo AV, Gatto A, Biasotto M, Bussani R, Zandonà L, Giudici F, Boscolo Nata F (2018) Tailored resections in oral and oropharyngeal cancer using narrow band imaging. Am J Otolaryngol 39:197–203. https://doi.org/10.1016/j.amjoto.2017.11.004

    Article  PubMed  Google Scholar 

  12. Choi N, Cho JK, Lee EK, Won SJ, Kim BY, Beak CH (2017) Transoral bisected resection for T1–2 oral tongue squamous cell carcinoma to secure adequate deep margin. Oral Oncol 73:70–76. https://doi.org/10.1016/j.oraloncology.2017.08.005

    Article  PubMed  Google Scholar 

  13. Tirelli G, Boscolo Nata F, Gatto A, Bussani R, Spinato G, Zacchigna S, Piovesana M (2018) Intraoperative margin control in transoral approach for oral and oropharyngeal cancer. Laryngoscope. https://doi.org/10.1002/lary.27567

    Article  PubMed  Google Scholar 

  14. Hinni ML, Zarka MA, Hoxworth JM (2013) Margin mapping in transoral surgery for head and neck cancer. Laryngoscope 123(5):1190–1198. https://doi.org/10.1002/lary.23900

    Article  PubMed  Google Scholar 

  15. Tirelli G, Hinni ML, Fernández-Fernández MM et al (2019) Frozen sections and complete resection in oral cancer surgery. Oral Dis. https://doi.org/10.1111/odi.13101 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  16. Black C, Marotti J, Zarovnaya E, Paydarfar J (2006) Clinical evaluation of frozen section margins in head and neck cancer resection. Cancer 15(107):2792–2800

    Article  Google Scholar 

  17. Vescovi P, Corcione L, Meleti M, Merigo E, Fornaini C, Manfredi M, Bonanini M, Govoni P, Rocca JP, Nammour S (2010) Nd:YAG laser versus traditional scalpel. A preliminary histological analysis of specimens from the human oral mucosa. Lasers Med Sci 25:685–691. https://doi.org/10.1007/s10103-010-0770-4

    Article  PubMed  Google Scholar 

  18. Pollei HR, Hinni ML, Moore EJ, Hayden RE, Olsen KD, Casler JD, Walter LC (2013) Analysis of postoperative bleeding and risk factors in transoral surgery of the oropharynx. Jama Otolaryngol Head Neck Surg 139:1212–1218. https://doi.org/10.1001/jamaoto.2013.5097

    Article  PubMed  Google Scholar 

  19. Balasundaram I, Payane KF, AL-Hadad I, Alibhai M, Thomas S, Bhandari R (2014) Is there any benefit in surgery for potentially malignant disorders of the oral cavity? J Oral Pathol Med 43(239–244):239–244. https://doi.org/10.1111/jop.12088

    Article  CAS  PubMed  Google Scholar 

  20. Remacle M et al (2017) Laser-assisted surgery of the upper aero-digestive tract: a clarification of nomenclature. A consensus statement of the European Laryngological Society. Eur Arch Otorhinolaryngol 274:3723–3727. https://doi.org/10.1007/s00405-017-4708-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Remacle M, Ricci-Maccarini A, Matar N, Lawson G, Pieri F, Bachy V, Nollevaux MC (2012) Reliability and efficacy of a new CO2 laser hollow fiber: a prospective study of 39 patients. Eur Arch Otorhinolayngol 269:917–921. https://doi.org/10.1007/s00405-011-1822-5

    Article  Google Scholar 

  22. Patel SH, Munson ND, Grant DG et al (2014) Relapse patterns after transoral laser microsurgery and postoperative irradiation for squamous cell carcinomas of the tonsil and tongue base. Ann Otol Rhinol Laryngol 123:32–39. https://doi.org/10.1177/0003489414521383

    Article  PubMed  Google Scholar 

  23. Canis M, Ihler F, Wolff HA, Christiansen H, Matthias C, Steiner W (2013) Oncologic and functional results after transoral laser microsurgery of tongue base carcinoma. Eur Arch Otorhinolaryngol 270:1075–1083. https://doi.org/10.1007/s00405-012-2097-2101

    Article  PubMed  Google Scholar 

  24. Remacle M, Matar N, Lawson G, Bachy V, Delos M, Nollevaux MC (2012) Combining a new CO2 laser wave guide with transoral robotic surgery: a feasibility study on four patients with malignant tumors. Eur Arch Otorhinolaryngol 269:1833–1837. https://doi.org/10.1007/s00405-011-1838-x

    Article  PubMed  Google Scholar 

  25. Vu J, Coleman HG, Palme CE, Riffat F, Schifter M, Zoellner H (2018) Diagnostic utility of microsurgical carbon dioxide laser excision of oral potentially malignant lesions vs incisional biopsy: a retrospective histopathological review. Oral Surg Oral Med Oral Pathol Oral Radiol. https://doi.org/10.1016/j.oooo.2018.12.010 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  26. Arens C, Betz C, Kraft M, Voigt-Zimmermann S (2017) Narrow band imaging for early diagnosis of epithelial dyplasia and microinvasive tumors in the upper aerodigestive tract. HNO 65(Suppl 1):5–12. https://doi.org/10.1007/s00106-016-0284-x

    Article  CAS  PubMed  Google Scholar 

  27. Buchakjian MR, Tasche KK, Robinson RA, Pagedar NA, Sperry SM (2016) Association of main specimen and tumor bed margin status with local recurrence and survival in oral cancer surgery. JAMA Otolaryngol Head Neck Surg 142:1191–1198. https://doi.org/10.1001/jamaoto.2016.2329

    Article  PubMed  Google Scholar 

  28. Varvares MA, Poti S, Kenyon B, Christopher K, Walker RJ (2015) Surgical margins and primary site resection in achieving local control in oral cancer resections. Laryngoscope 125:2298–2307. https://doi.org/10.1002/lary.25397

    Article  PubMed  Google Scholar 

  29. Tirelli G, Camilot D, Bonini P, Del Piero GC, Biasotto M, Quatela E (2015) Harmonic scalpel and electrothermal bipolar vessel sealing system in head and neck surgery: a prospective study on tissue heating and histological damage on nerves. Ann Otol Rhinol Laryngol 124:852–858. https://doi.org/10.1177/0003489415588556

    Article  PubMed  Google Scholar 

  30. Kumar K, Shetty DC, Dua M (2012) Biopsy and tissue processing artifacts in oral mucosal tissues. Int J Head Neck Surg 3:92–98

    Article  Google Scholar 

  31. Eversole LR (1997) Laser artifacts and diagnostic biopsy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 83:639–640

    Article  CAS  PubMed  Google Scholar 

  32. Remacle M, Delos M, Lawson G, Jamart J (2002) Accuracy of histological examination following endoscopic CO2 laser-assisted laryngectomy. Otorhinolaryngol Nova 12:16–20. https://doi.org/10.1159/000068994

    Article  Google Scholar 

  33. Azevedo AS, Monteiro LS, Ferreira F, Delgado ML, Garcês F, Carreira S, Martins M, Suarez-Quintanilla J (2016) In vitro histological evaluation of the surgical margins made by different laser wavelengths in tongue tissues. J Clin Exp Dent 8:e388–e396

    PubMed  PubMed Central  Google Scholar 

  34. Hanby DF, Gremillion G, Zieske AW, Loehn B, Whitworth R, Wolf T, Kakade AC, Walvekar RR (2011) Harmonic scalpel versus flexible CO2 laser for tongue resection: a histopathological analysis of thermal damage in human cadavers. World J Surg Oncol 1(9):83. https://doi.org/10.1186/1477-7819-9-83

    Article  Google Scholar 

  35. Liboon J, Funkhouser W, Terris DJ (1997) A comparison of mucosal incisions made by scalpel, CO2 laser, electrocautery, and constant-voltage electrocautery. Otolaryngol Head Neck Surg 116:379–385 (while it is reported to be 1000 μm with the new radiofrequency tools)

    Article  CAS  PubMed  Google Scholar 

  36. Carlander J, Johansson K, Lindström S et al (2005) Comparison of experimental nerve injury caused by ultrasonically activated scalpel and electrosurgery. Br J Surg 92:772–777

    Article  CAS  PubMed  Google Scholar 

  37. Remacle M, Matar N, Delos M, Nollevaux MC, Lamart J, Lawson g (2010) Is frozen sections reliable in transoral CO(2) laser-assisted cordectomies? Eur Arch Otorhinolaryngol 267:397–400. https://doi.org/10.1007/s00405-009-1101-x

    Article  PubMed  Google Scholar 

  38. Palaia G, Del Vecchio A, Impellizzeri A, Tenore G, Visca P, Libotte F, Russo C, Romeo U (2014) Histological ex vivo evaluation of peri-incisional thermal effect created by a new-generation CO2 superpulsed laser. Sci World J 2014:345685. https://doi.org/10.1155/2014/345685

    Article  CAS  Google Scholar 

  39. Steiner W, Ambrosch P (2000) Complications. In: Stuttgart (ed) Endoscopic laser surgery of the upper aerodigestive tract. Georg Thieme, Stuttgart, pp 112–113

    Google Scholar 

  40. Salassa JR, Hinni ML, Grant DG, Hayden RE (2008) Postoperative bleeding in transoral laser microsurgery for upper aerodigestive tract tumors. Otolaryngol Head Neck Surg 139:453–459. https://doi.org/10.1016/j.otohns.2008.06.010

    Article  PubMed  Google Scholar 

  41. Vilaseca-González I, Bernal-Sprekelsen M, Blanch-Alejandro JL, Moragas-Lluis M (2003) Complications in transoral CO2 laser surgery for carcinoma of the larynx and hypopharynx. Head Neck 25:382–388

    Article  PubMed  Google Scholar 

  42. Haughey BH, Hinni ML, Salassa JR, Hayden RE, Grant DG, Rich JT, Milov S, Lewis JS Jr, Krishna M (2011) Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States multicenter study. Head Neck 33:1683–1694. https://doi.org/10.1002/hed.21669

    Article  PubMed  Google Scholar 

  43. Hinni ML, Lott DG (2015) Contemporary transoral surgery for primary head and neck cancer. Plural Publishing, San Diego

    Google Scholar 

  44. Suter VG, Altermatt HJ, Bornstein MM (2017) A ramdomized controlled clinical and histopatological trial comparing incisional biopsies of oral fibrous hyperplasias using CO2 and Er: YAG laser. Laser Med Sci 32:573–581. https://doi.org/10.1007/s10103-017-2151-8

    Article  Google Scholar 

  45. Sinha UK, Gallagher LA (2003) Effects of steel scalpel, ultrasonic scalpel, CO2 laser, and monopolar and bipolar electrosurgery on wound healing in guinea pig oral mucosa. Laryngoscope 113:228–236

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Itala Mary Ann Brancaleone, MA, RSA Dip TEFLA, teacher of Medical English at the University of Trieste, for her support in editing the manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Piovesana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirelli, G., Boscolo Nata, F., Bussani, R. et al. How we improve the transoral resection for oral and oropharyngeal cancer: the CO2 waveguide laser. Eur Arch Otorhinolaryngol 276, 2301–2310 (2019). https://doi.org/10.1007/s00405-019-05473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-019-05473-x

Keywords

Navigation