Skip to main content
Log in

The influence of maternal diet on offspring’s gut microbiota in early life

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established.

Objective

In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed.

Conclusion

The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Melina V, Craig W, Levin S (2016) Position of the academy of nutrition and dietetics: vegetarian diets. J Acad Nutr Diet 116(12):1970–1980

    Article  PubMed  Google Scholar 

  2. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  ADS  PubMed  Google Scholar 

  3. Bajinka O, Darboe A, Tan Y et al (2020) Gut microbiota and the human physiological changes. Ann Microbiol 70:65

    Article  CAS  Google Scholar 

  4. Chong CYL, Bloomfifield FH, Sullivan JM (2018) Factors affecting gastrointestinal microbiome development in neonates. Nutrients 10:274

    Article  PubMed  PubMed Central  Google Scholar 

  5. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bruce-Keller G, Annadora J, Fernandez-Kim J et al (2017) Maternal obese-Type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS ONE 4:1–20

    Google Scholar 

  8. Warren MF, Hallowell HA, Higgins KV et al (2019) Maternal dietary protein intake influences milk and offspring gut microbial diversity in a rat (Rattus norvegicus) model. Nutrients 7:1–11

    Google Scholar 

  9. Mann PE, Huynh K, Widmer G (2018) Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes 9(2):143–154

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, Xiao X, Zhang Q et al (2019) Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. Food Funct 10(8):4505–4521

    Article  CAS  PubMed  Google Scholar 

  11. Huang YC, Huang LT, Sheen JM et al (2020) Resveratrol treatment improves the altered metabolism and related dysbiosis of gut programed by prenatal high-fat diet and postnatal high-fat diet exposure. J Nutr Biochem 75:108260

    Article  CAS  PubMed  Google Scholar 

  12. Xavier MJ, Roman SD, Aitken RJ et al (2019) Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 25(5):518–540

    Article  PubMed  Google Scholar 

  13. Santos SAA, Camargo ACL, Constantino FB et al (2020) Identification of potential molecular pathways involved in prostate carcinogenesis in offspring exposed to maternal malnutrition. Aging 12(20):19954–19978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Du JE, You YA, Kwon EJ et al (2020) Maternal malnutrition affects hepatic metabolism through decreased hepatic taurine levels and changes in HNF4A methylation. Int J Mol Sci 21(23):9060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hasebe K, Kendig MD, Morris MJ (2021) Mechanisms underlying the cognitive and behavioural effects of maternal obesity. Nutrients 13(1):240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang K, Zhu J, Wu J et al (2021) Maternal Vitamin D Deficiency Increases Intestinal Permeability and Programs Wnt/β-Catenin Pathway in BALB/C Mice. JPEN J Parenter Enteral Nutr 45(1):102–114

    Article  CAS  PubMed  Google Scholar 

  17. Meng Y, Yannan Z, Ren L et al (2020) Adverse reproductive function induced by maternal BPA exposure is associated with abnormal autophagy and activating inflamation via mTOR and TLR4/NF-κB signaling pathways in female offspring rats. Reprod Toxicol 4(96):185–194

    Article  Google Scholar 

  18. Yan S, Wang F, Shi Q (2020) The effect of maternal high-fat-diet mediated oxidative stress on ovarian function in mice offspring. Exp Ther Med 20(6):135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Windt M, Schoenmakers S, van Rijn B et al (2021) Epidemiology and (Patho) Physiology of Folic Acid Supplement Use in Obese Women before and during Pregnancy. Nutrients 13(2):331

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antoun E, Kitaba NT, Titcombe P et al (2020) UPBEAT Consortium. Maternal dysglycaemia, changes in the infant’s epigenome modified with a diet and physical activity intervention in pregnancy: Secondary analysis of a randomised control trial. PLoS Med 17(11):e1003229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel N, Hellmuth C, Uhl O et al (2018) UPBEAT Consortium Cord Metabolic Profiles in Obese Pregnant Women: Insights Into Offspring Growth and Body Composition. J Clin Endocrinol Metab 103(1):346–355

    Article  PubMed  Google Scholar 

  22. Geraghty AA, O’Brien EC, Alberdi G et al (2018) Maternal protein intake during pregnancy is associated with child growth up to 5 years of age, but not through insulin-like growth factor-1: findings from the ROLO study. Br J Nutr 120(11):1252–1261

    Article  CAS  PubMed  Google Scholar 

  23. Desai M, Ferrini MG, Han G et al (2020) Maternal High Fat Diet Programs Male Mice Offspring Hyperphagia and Obesity: Mechanism of Increased Appetite Neurons via Altered Neurogenic Factors and Nutrient Sensor AMPK. Nutrients 12(11):3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu L, Liu Z, Li Y et al (2020) Integration of metabolomics and proteomics to highlight altered neural development related pathways in the adult offspring after maternal folic acid supplement. Clin Nutr S0261–5614(20):30278–30288

    Google Scholar 

  25. Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J (2018) Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight 3(19):e99223

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qiu X, Bajinka O, Wang L, Wu G, Tan Y (2021) High-fat diet promotes epithelial-mesenchymal transition through enlarged growth of opportunistic pathogens and the intervention of saturated hydrogen. Am J Transl Res 13(6):6016–6030

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bajinka O, Tan Y, Abdelhalim KA, Özdemir G et al (2020) Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 10(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiao N, Baker SS, Nugent CA et al (2018) Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics 50(4):244–254

    Article  CAS  PubMed  Google Scholar 

  29. Zhou JY, Du XH, Zhang Z et al (2017) Trigonelline Inhibits Inflammation and Protects β cells to prevent fetal growth restriction during pregnancy in a mouse model of diabetes. Pharmacology 100(5–6):209–217

    Article  CAS  PubMed  Google Scholar 

  30. Robertson R, Seira Oriach C et al (2017) Omega-3 polyunsaturated fatty acids critically regulate behavior and gut microbiota development in adolescence and adulthood. BMC 59:21–37

    CAS  Google Scholar 

  31. O’Mahony SM, McVey Neufeld K-A, Waworuntu RV et al (2019) The enduring effects of early-life stress on the microbiota–gut–brain axis are buffered by dietary supplementation with milkfat globule membrane and a prebiotic blend. Eur J Neurosci 00:1–17

    Google Scholar 

  32. Elena S, Angela Tripodi MG, Panetta M et al (2019) Microbiota signatures relating to reduced memory and exploratory behavior in the offspring of overweight mothers in a murine model. Marta Zega et al. Microbiota signatures relating to reduced memory and exploratory behavior in the offspring of overweight mothers in a murine model. Sci Rep 9(1):12609

    Article  ADS  Google Scholar 

  33. Bariani MV, Correa F, Domínguez Rubio AP et al (2020) Maternal obesogenic diet combined with postnatal exposure to high-fat diet includes metabolic alterations in offspring. J Cell Physiol 235(11):8260–8269

    Article  CAS  PubMed  Google Scholar 

  34. Yokomizo H, Inoguchi T, Sonoda N et al (2014) Maternal high-fat diet induces insulin resistance and deterioration of pancreatic beta-cell function in adult offspring with sex differences in mice. Am J Physiol Endocrinol Metab 306:E1163–E1175

    Article  CAS  PubMed  Google Scholar 

  35. Collado M, Carmen I, Erika L et al (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92(5):1023–1030

    Article  CAS  PubMed  Google Scholar 

  36. Morris MJ (2009) Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes (Lond) 33(1):115–122

    Article  CAS  PubMed  Google Scholar 

  37. Tun HM et al (2018) Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to o46ffspring. JAMA Pediatr 172:368–377

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gohir W, Kennedy KM, Wallace JG et al (2019) High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J Physiol 597(12):3029–3051

    Article  CAS  PubMed  Google Scholar 

  39. Zhou L, Xiao X (2018) The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Biosci Rep 38(2):13

    Article  Google Scholar 

  40. Mulligan MC, Friedman EJ (2017) Maternal modifiers of the infant gut microbiota - metabolic consequences. J Endocrinol 235(1):R1–R12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. María Teresa F-D, Yael Efren D-L, Ruth G-A (2020) Environment and gene association with obesity and their impact on neurodegenerative and neurodevelopmental diseases. Front Neurosci 14:863

    Article  Google Scholar 

  42. Sun J, Qiao Y, Qi C et al (2016) High-fat-diet–induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer’s patches. Nutrition 32:265–272

    Article  CAS  PubMed  Google Scholar 

  43. Collado MC, Isolauri E, Laitinen K et al (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92(5):1023–1030

    Article  CAS  PubMed  Google Scholar 

  44. Soderborg TK, Clark SE, Mulligan CE et al (2018) The gut microbiota in infants of obese mother’s increases inflammation and susceptibility to NAFLD. Med 78:1–12

    Google Scholar 

  45. Zheng J, Xiao X, Zhang Q et al (2016) The effects of maternal and post-weaning diet interaction on glucose metabolism and gut microbiota in male mice offspring 36(3):e00341

    CAS  Google Scholar 

  46. Triunfo S, Lanzone A (2014) Impact of overweight and obesity on obstetric outcomes. J Endocrinol Invest 37:323–329

    Article  CAS  PubMed  Google Scholar 

  47. Wadhwa PD, Buss C, Entringer S et al (2009) Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27:358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paul AH, Bomhof RM, Vogel JH et al (2016) Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep 6:20683

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahizir D, Briffa JF, Wood JL et al (2020) Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes. FASEB J 34:1728–1744

    Article  CAS  PubMed  Google Scholar 

  50. Friis Hansen HC, Krych L, Buschard K et al (2014) A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes 63(8):2821–2832

    Article  Google Scholar 

  51. Ribaroff GA, Wastnedge E, Drake AJ et al (2017) Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Wiley-Blackwell 18(6):673–686

    CAS  Google Scholar 

  52. Wagner-Skacel J, Dalkner N, Moerkl S et al (2020) Sleep and microbiome in psychiatric diseases. Nutrients 12(8):2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giusti L, Gabriele M, Penno G et al (2017) A fermented whole grain prevents lipopolysaccharides-induced dysfunction in human endothelial progenitor cells. Oxid Med Cell Longev 2017:1026268

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rivera CA, Gaskin L, Singer G et al (2010) Western diet enhances hepatic inflammation in mice exposed to ceceal ligation and punctura. BMC Physiol 10:20

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ohta T, Toriniwa Y, Ryumon N (2017) Maternal high-fat diet promotes onset of diabetes in rat offspring. Anim Sci J 88(1):149–155

    Article  CAS  PubMed  Google Scholar 

  56. Venter C, Carlo Agostoni S, Hasan A et al (2020) Dietary factors during pregnancy and atopic outcomes in childhood: A systematic review from the European Academy of Allergy and Clinical Immunology. Allergy Clin Immunol 31(8):889–912

    Google Scholar 

  57. Ling-Wei C, Becky L, Pilar N et al (2020) Maternal dietary inflammatory potential and quality are associated with offspring asthma risk over 10-year follow-up: the Lifeways Cross-Generation Cohort Study. Am J Clin Nutr 111:2

    Google Scholar 

  58. Wright SL, Rifas-Shiman LS, Oken E et al (2018) Prenatal and early life fructose, fructose-containing beverages, and midchildhood asthma. Ann Am Thorac Soc 15(2):217–224

    Article  PubMed  PubMed Central  Google Scholar 

  59. Thorburn AN, McKenzie CI, Shen S et al (2015) Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 6:7320

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Maslova E, Rifas-Shiman SL, Oken E et al (2019) Fatty acids in pregnancy and risk of allergic sensitization and respiratory outcomes in childhood. Ann Allergy Asthma Immunol 122(120–122):e3

    Google Scholar 

  61. Hanson C, Brigham E (2020) Maternal nutrition and child respiratory outcomes: paradigms of lung health and disease. Eur Respir J 55:1902437

    Article  PubMed  Google Scholar 

  62. Nakajima A, Habu S, Kasai M et al (2020) Impact of maternal dietary gut microbial metabolites on an offspring’s systemic immune response in mouse models. Biosci Microbiota Food Health 39(2):33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu S, Gao J, Zhu M et al (2020) Gut Microbiota and Dysbiosis in Alzheimer’s disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 57:5026–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gubert C, Kong G, Renoir T et al (2020) Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 134:104621

    Article  CAS  PubMed  Google Scholar 

  65. Lin C, Zhao S, Zhu Y et al (2019) Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Comput Struct Biotechnol J 17:1309–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhuang Z, Shen L, Li W et al (2018) Gut Microbiota is Altered in Patients with Alzheimer’s Disease. J Alzheimers Dis 63(4):1337–1346

    Article  CAS  PubMed  Google Scholar 

  67. Ana Marcia D et al (2017) Maternal Omega-3 Supplement Improves Dopaminergic System in Pre- and Postnatal Inflammation-Induced Neurotoxicity in Parkinson’s Disease Model. Mol Neurobiol 54(3):2090–2106

    Article  Google Scholar 

  68. Izquierdo V, Palomera-Ávalos V, López-Ruiz S et al (2019) Maternal resveratrol supplementation prevents cognitive decline in senescent mice offspring. Int J Mol Sci 20(5):1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stefano GB, Pilonis N, Ptacek R et al (2018) Gut, microbiome, and brain regulatory axis: relevance to neurodegenerative and psychiatric disorders. Cell Mol Neurobiol 38(6):1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Li-Hua Peng wrote the manuscript. Yurong Tan and Ousman Bajinka proofread the manuscript and all authors approved the final manuscript.

Corresponding authors

Correspondence to Yurong Tan or Ousman Bajinka.

Ethics declarations

Conflict of interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, LH., Tan, Y. & Bajinka, O. The influence of maternal diet on offspring’s gut microbiota in early life. Arch Gynecol Obstet 309, 1183–1190 (2024). https://doi.org/10.1007/s00404-023-07305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07305-0

Keywords

Navigation