Skip to main content
Log in

The worsening impact of programmed cell death ligand 1 in ovarian clear cell carcinomas

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the clinical significance of programmed cell death ligand 1 (PD-L1) expression in ovarian clear cell carcinoma (CCC).

Materials and methods

Patients with CCC who underwent primary surgery at our hospital between 1984 and 2014 were enrolled in this study. PD-L1 and mismatch repair (MMR) protein expression in tumor cells, tumor-infiltrating lymphocytes (TILs), including cluster of differentiation (CD) 8, CD4, forkhead box P3 (FOXP3), programmed cell death 1 (PD-1), and BAF250a, were evaluated using immunohistochemistry. The association between PD-L1 expression, clinicopathological features, prognosis, and expression of several proteins was investigated.

Results

Of the 125 patients with CCC, 17 had negative PD-L1 and 108 had positive PD-L1. Patients with positive PD-L1 expression showed a lower response to chemotherapy (p = 0.01). In addition, patients with positive PD-L1 showed worse progression-free survival (PFS, p = 0.01) and overall survival (OS, p = 0.01) than that in patients with negative PD-L1 expression. Multivariate analyses for PFS and OS showed that PD-L1 expression was an independent prognostic factor for PFS (hazard ratio [HR] 7.81, p < 0.01) and OS (HR 12.90, p < 0.01). PD-L1 expression was not associated with the expression of several TILs or proteins.

Conclusion

The expression of PD-L1 was related to a lower response to chemotherapy and worse prognosis in CCC. These results may be useful for the development of new treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The corresponding author will send dataset according to reasonable request.

Code availability

Not applicable.

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Trimbos JB, Vergote I, Bolis G, Vermorken JB, Mangioni C, Madronal C, Franchi M, Tateo S, Zanetta G, Scarfone G, Giurgea L, Timmers P, Coens C, Pecorelli S (2003) Impact of adjuvant chemotherapy and surgical staging in early-stage ovarian carcinoma: European Organisation for Research and Treatment of Cancer-Adjuvant Chemo Therapy in Ovarian neoplasm trial. J Natl Cancer Inst 95:113–125

    Article  CAS  PubMed  Google Scholar 

  3. Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ (2002) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 20:1248–1259. https://doi.org/10.1200/JCO.2002.20.5.1248

    Article  PubMed  Google Scholar 

  4. Takano M, Kikuchi Y, Yaegashi N, Kuzuya K, Ueki M, Tsuda H, Suzuki M, Kigawa J, Takeuchi S, Tsuda H, Moriya T, Sugiyama T (2006) Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical staging. Br J Cancer 94:1369–1374. https://doi.org/10.1038/sj.bjc.6603116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryu SY, Park SI, Nam BH, Kim I, Yoo CW, Nam JH, Lee KH, Cho CH, Kim JH, Park SY, Kim BG, Kang SB (2009) Prognostic significance of histological grade in clear-cell carcinoma of the ovary: a retrospective study of Korean Gynecologic Oncology Group. Ann Oncol 20:1032–1036. https://doi.org/10.1093/annonc/mdn764

    Article  PubMed  Google Scholar 

  6. Fujiwara K, Shintani D, Nishikawa T (2016) Clear-cell carcinoma of the ovary. Ann Oncol 27(Supplement 1):i50–i52. https://doi.org/10.1093/annonc/mdw086

    Article  PubMed  Google Scholar 

  7. Miyamoto M, Takano M, Goto T, Kato M, Sasaki N, Tsuda H, Furuya K (2013) Clear cell histology as a poor prognostic factor for advanced epithelial ovarian cancer: a single institutional case series through central pathologic review. J Gynecol Oncol 24:37–43. https://doi.org/10.3802/jgo.2013.24.1.37

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meng X, Huang Z, Teng F, Xing L, Yu J (2015) Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev 41:868–876. https://doi.org/10.1016/j.ctrv.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Reiss KA, Forde PM, Brahmer JR (2014) Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy. Immunotherapy 6:459–475. https://doi.org/10.2217/imt.14.9

    Article  CAS  PubMed  Google Scholar 

  10. Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, Okazaki T, Tokura Y (2010) Tumor cell expression of programmed cell death-1 ligand1 is a prognostic factor for malignant melanoma. Cancer 116:1757–1766. https://doi.org/10.1002/cncr.24899

    Article  PubMed  Google Scholar 

  11. Chen YB, Mu CY, Huang JA (2012) Clinical significance of programmed death-1 ligand-1 expression in patients with non-small cell lung cancer: a 5-year-follow-up study. Tumori 98:751–755. https://doi.org/10.1700/1217.13499

    Article  PubMed  Google Scholar 

  12. Shi SJ, Wang LJ, Wang GD, Guo ZY, Wei M, Meng YL, Yang AG, Wen WH (2013) B7–H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells. PLoS ONE 8:e76012. https://doi.org/10.1371/journal.pone.0076012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, Macrì E, Fornasarig M, Boiocchi M (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154:1805–1813. https://doi.org/10.1016/S0002-9440(10)65436-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074. https://doi.org/10.1158/1078-0432.CCR-13-3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, Nagel ZD, Zou J, Wang C, Kapoor P, Ma X, Ma D, Liang J, Song S, Liu J, Samson LD, Ajani JA, Li GM, Liang H, Shen X, Mills GB, Peng G (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24:556–562. https://doi.org/10.1038/s41591-018-0012-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–3365. https://doi.org/10.1073/pnas.0611533104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu J, Wen H, Bi R, Wu Y, Wu X (2017) Prognostic value of programmed death-ligand 1 (PD-L1) expression in ovarian clear cell carcinoma. J Gynecol Oncol 28:e77. https://doi.org/10.3802/jgo.2017.28.e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao X, Dong D, He W, Song L, Wang Q, Yue J, Xie L (2018) Mismatch repair deficiency is associated with MSI phenotype, increased tumor-infiltrating lymphocytes and PD-L1 expression in immune cells in ovarian cancer. Gynecol Oncol 149:146–154. https://doi.org/10.1016/j.ygyno.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  19. Chui MH, Ryan P, Radigan J, Ferguson SE, Pollett A, Aronson M, Semotiuk K, Holter S, Sy K, Kwon JS, Soma A, Singh N, Gallinger S, Shaw P, Arseneau J, Foulkes WD, Gilks CB, Clarke BA (2014) The histomorphology of Lynch syndrome-associated ovarian carcinomas: toward a subtype-specific screening strategy. Am J Surg Pathol 38:1173–1181. https://doi.org/10.1097/PAS.0000000000000298

    Article  PubMed  Google Scholar 

  20. Howitt BE, Strickland KC, Sholl LM, Rodig S, Ritterhouse LL, Chowdhury D, D’Andrea AD, Matulonis UA, Konstantinopoulos PA (2017) Clear cell ovarian cancers with microsatellite instability: a unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology 6:e1277308. https://doi.org/10.1080/2162402X.2016.1277308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bennett JA, Morales-Oyarvide V, Campbell S, Longacre TA, Oliva E (2016) Mismatch repair protein expression in clear cell carcinoma of the ovary: incidence and morphologic associations in 109 cases. Am J Surg Pathol 40:656–663. https://doi.org/10.1097/PAS.0000000000000602

    Article  PubMed  Google Scholar 

  22. Mutch DG, Prat J (2014) 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol Oncol 133:401–404. https://doi.org/10.1016/j.ygyno.2014.04.013

    Article  PubMed  Google Scholar 

  23. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline, 1.1 version. Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  24. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oda K, Hamanishi J, Matsuo K, Hasegawa K (2018) Genomics to immunotherapy of ovarian clear cell carcinoma: unique opportunities for management. Gynecol Oncol 151:381–389. https://doi.org/10.1016/j.ygyno.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ, IeM S (2009) Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 174:1597–1601. https://doi.org/10.2353/ajpath.2009.081000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujita Y, Yagishita S, Hagiwara K, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Tsuta K, Nokihara H, Tamura T, Asamura H, Kawaishi M, Kuwano K, Ochiya T (2015) The clinical relevance of the miR-197/CKS1B/STAT3 -mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther 23:717–727. https://doi.org/10.1038/mt.2015.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, Zheng L, Liu Z, Qiu Y (2020) Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J Exp Clin Cancer Res 39:29. https://doi.org/10.1186/s13046-020-1536-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishibashi M, Tamura H, Sunakawa M, Kondo-Onodera A, Okuyama N, Hamada Y, Moriya K, Choi I, Tamada K, Inokuchi K (2016) Myeloma drug resistance induced by binding of myeloma B7–H1 (PD-L1) to PD-1. Cancer Immunol Res 4:779–788. https://doi.org/10.1158/2326-6066.CIR-15-0296

    Article  CAS  PubMed  Google Scholar 

  30. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SE, Schnitt SS, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, André F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International immuno-Oncology Biomarkers Working Group: Part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24:311–335. https://doi.org/10.1097/PAP.0000000000000161

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213. https://doi.org/10.1056/NEJMoa020177

    Article  CAS  PubMed  Google Scholar 

  32. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102:18538–18543. https://doi.org/10.1073/pnas.0509182102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stumpf M, Hasenburg A, Riener MO, Jütting U, Wang C, Shen Y, Orlowska-Volk M, Fisch P, Wang Z, Gitsch G, Werner M, Lassmann S (2009) Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 101:1513–1521. https://doi.org/10.1038/sj.bjc.6605274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, Kanai M, Mori Y, Matsumoto S, Chikuma S, Matsumura N, Abiko K, Baba T, Yamaguchi K, Ueda A, Hosoe Y, Morita S, Yokode M, Shimizu A, Honjo T, Konishi I (2015) Safety and antitumor activity of anti-PD-1 antibody, Nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 33:4015–4022. https://doi.org/10.1200/JCO.2015.62.3397

    Article  CAS  PubMed  Google Scholar 

  36. Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, Patel MR, Chaves J, Park H, Mita AC, Hamilton EP, Annunziata CM, Grote HJ, von Heydebreck A, Grewal J, Chand V, Gulley JL (2019) Efficacy and safety of Avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN Solid Tumor Trial. JAMA Oncol 5:393–401. https://doi.org/10.1001/jamaoncol.2018.6258

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This study was conducted without any financial support.

Author information

Authors and Affiliations

Authors

Contributions

Protocol/project development: HM, MM, HT, and MT. Data collection or management: TH, HI, HI, SK, RS, TI, and JS. Data analysis: HM, MM, HT. Manuscript writing/editing: HM, MM, and MT.

Corresponding author

Correspondence to Morikazu Miyamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The present study was approved by the Ethics Committee of the National Defense Medical College Hospital (No. 2769).

Informed consent

Informed consent did not be obtained from all participants due to retrospective analysis.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, H., Miyamoto, M., Hada, T. et al. The worsening impact of programmed cell death ligand 1 in ovarian clear cell carcinomas. Arch Gynecol Obstet 306, 2133–2142 (2022). https://doi.org/10.1007/s00404-022-06582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06582-5

Keywords

Navigation