Skip to main content

Advertisement

Log in

Predictive value of anti-Müllerian hormone on pregnancy outcomes in in-vitro fertilization/intracytoplasmic single sperm injection patients at different ages

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the predictive value of AMH level for pregnancy outcomes in different age groups of IVF/ICSI patients.

Methods

The study was a cohort study that included 11,484 patients that had their first IVF/ICSI procedure between 2016 and 2019. All patients who met the inclusion and exclusion criteria were divided into 6 groups according to 5-year age intervals, namely, Group 1: 20–24 years (n = 725); Group 2: 25–29 years (n = 4019); Group 3: 30–34 years (n = 3600); Group 4: 35–39 years (n = 1915); Group 5: 40–44 years (n = 1006); and Group 6: ≥ 45 years (n = 219).

Results

Receiver operating characteristic (ROC) curve analysis revealed that AMH level could only predict the outcome of live birth in Group 3 and Group 4 (p < 0.05). The area under the curve (AUC) of Group 3 was 0.536 (95% CI 0.510–0.561, p = 0.006), and that of Group 4 was 0.562 (95% CI 0.527–0.598, p = 0.001). The cutoff values of AMH for predicting live birth in Group 3 and Group 4 were 1.84 ng/ml and 1.86 ng/ml, respectively. Further logistic regression analysis showed that only the cutoff values of AMH and age could predict live birth in Groups 3 and 4.

Conclusions

AMH level could predict live birth in IVF/ICSI patients at the age of 30–39. However, it could not be used to predict live birth in patients < 30 years or ≥ 40 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data set used and/or analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Weenen C, Laven JS, Von Bergh AR et al (2004) Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 10:77–83. https://doi.org/10.1093/molehr/gah015

    Article  CAS  PubMed  Google Scholar 

  2. Visser JA, Themmen AP (2005) Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol 234:81–86. https://doi.org/10.1016/j.mce.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  3. Broer SL, van Disseldorp J, Broeze KA et al (2013) Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update 19:26–36. https://doi.org/10.1093/humupd/dms041

    Article  PubMed  Google Scholar 

  4. Peluso C, Fonseca FL, Rodart IF et al (2014) AMH: an ovarian reserve biomarker in assisted reproduction. Clin Chim Acta 437:175–182. https://doi.org/10.1016/j.cca.2014.07.029

    Article  CAS  PubMed  Google Scholar 

  5. Elgindy EA, El-Haieg DO, El-Sebaey A (2008) Anti-mullerian hormone: correlation of early follicular, ovulatory and midluteal levels with ovarian response and cycle outcome in intracytoplasmic sperm injection patients. Fertil Steril 89:1670–1676. https://doi.org/10.1016/j.fertnstert.2007.05.040

    Article  CAS  PubMed  Google Scholar 

  6. Broekmans FJ, Kwee J, Hendriks DJ et al (2006) A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 12:685–718. https://doi.org/10.1093/humupd/dml034

    Article  CAS  PubMed  Google Scholar 

  7. Blazar AS, Lambert-Messerlian G, Hackett R et al (2011) Use of in-cycle Anti-Mullerian hormone levels to predict cycle outcome. Am J Obstet Gynecol 205(223):e221-225. https://doi.org/10.1016/j.ajog.2011.04.035

    Article  CAS  Google Scholar 

  8. Eldar-Geva T, Ben-Chetrit A, Spitz IM et al (2005) Dynamic assays of inhibin B, anti-Mullerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod 20:3178–3183. https://doi.org/10.1093/humrep/dei203

    Article  CAS  PubMed  Google Scholar 

  9. Ligon S, Lustik M, Levy G, Pier B (2019) Low antimullerian hormone (AMH) is associated with decreased live birth after in vitro fertilization when follicle-stimulating hormone and AMH are discordant. Fertil Steril 112:73-81 e71. https://doi.org/10.1016/j.fertnstert.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  10. Gnoth C, Schuring AN, Friol K et al (2008) Relevance of anti-Mullerian hormone measurement in a routine IVF program. Hum Reprod 23:1359–1365. https://doi.org/10.1093/humrep/den108

    Article  CAS  PubMed  Google Scholar 

  11. La Marca A, Sighinolfi G, Giulini S et al (2010) Normal serum concentrations of anti-Mullerian hormone in women with regular menstrual cycles. Reprod Biomed Online 21:463–469. https://doi.org/10.1016/j.rbmo.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  12. Seifer DB, Baker VL, Leader B (2011) Age-specific serum anti-Mullerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil Steril 95:747–750. https://doi.org/10.1016/j.fertnstert.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  13. Seifer DB, Golub ET, Lambert-Messerlian G et al (2009) Variations in serum mullerian inhibiting substance between white, black, and Hispanic women. Fertil Steril 92:1674–1678. https://doi.org/10.1016/j.fertnstert.2008.08.110

    Article  PubMed  Google Scholar 

  14. Bleil ME, Gregorich SE, Adler NE et al (2014) Race/ethnic disparities in reproductive age: an examination of ovarian reserve estimates across four race/ethnic groups of healthy, regularly cycling women. Fertil Steril 101:199–207. https://doi.org/10.1016/j.fertnstert.2013.09.015

    Article  PubMed  Google Scholar 

  15. Kelly AG, Hancock K, Pereira N et al (2017) Asian ethnicity is an independent determinant of ovarian reserve and response in women undergoing fresh IVF-ET cycles. Fertil Steril 108:e43. https://doi.org/10.1016/j.fertnstert.2017.07.140

    Article  Google Scholar 

  16. Gleicher N, Kim A, Weghofer A, Barad DH (2012) Differences in ovarian aging patterns between races are associated with ovarian genotypes and sub-genotypes of the FMR1 gene. Reprod Biol Endocrinol 10:77. https://doi.org/10.1186/1477-7827-10-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iglesias C, Banker M, Mahajan N et al (2014) Ethnicity as a determinant of ovarian reserve: differences in ovarian aging between Spanish and Indian women. Fertil Steril 102:244–249. https://doi.org/10.1016/j.fertnstert.2014.03.050

    Article  PubMed  Google Scholar 

  18. Begum K, Muttukrishna S, Sievert LL et al (2016) Ethnicity or environment: effects of migration on ovarian reserve among Bangladeshi women in the United Kingdom. Fertil Steril 105:744-754 e741. https://doi.org/10.1016/j.fertnstert.2015.11.024

    Article  PubMed  Google Scholar 

  19. Gleicher N, Weghofer A, Lee IH, Barad DH (2010) FMR1 genotype with autoimmunity-associated polycystic ovary-like phenotype and decreased pregnancy chance. PLoS ONE 5:e15303. https://doi.org/10.1371/journal.pone.0015303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gleicher N, Weghofer A, Kim A, Barad DH (2012) The impact in older women of ovarian FMR1 genotypes and sub-genotypes on ovarian reserve. PLoS ONE 7:e33638. https://doi.org/10.1371/journal.pone.0033638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gleicher N, Weghofer A, Lee IH, Barad DH (2011) Association of FMR1 genotypes with in vitro fertilization (IVF) outcomes based on ethnicity/race. PLoS One 6:e18781. https://doi.org/10.1371/journal.pone.0018781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, He YL, Li R et al (2020) Age-specific reference ranges of serum anti-mullerian hormone in healthy women and its application in diagnosis of polycystic ovary syndrome: a population study. BJOG 127:720–728. https://doi.org/10.1111/1471-0528.16147

    Article  CAS  PubMed  Google Scholar 

  23. Jayaprakasan K, Campbell B, Hopkisson J et al (2010) A prospective, comparative analysis of anti-Mullerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to controlled ovarian stimulation. Fertil Steril 93:855–864. https://doi.org/10.1016/j.fertnstert.2008.10.042

    Article  PubMed  Google Scholar 

  24. Lee TH, Liu CH, Huang CC et al (2008) Serum anti-Mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod 23:160–167. https://doi.org/10.1093/humrep/dem254

    Article  CAS  PubMed  Google Scholar 

  25. Nelson SM, Yates RW, Fleming R (2007) Serum anti-Mullerian hormone and FSH: prediction of live birth and extremes of response in stimulated cycles–implications for individualization of therapy. Hum Reprod 22:2414–2421. https://doi.org/10.1093/humrep/dem204

    Article  CAS  PubMed  Google Scholar 

  26. Freour T, Mirallie S, Colombel A et al (2006) Anti-mullerian hormone: clinical relevance in assisted reproductive therapy. Ann Endocrinol (Paris) 67:567–574. https://doi.org/10.1016/s0003-4266(06)73008-6

    Article  CAS  Google Scholar 

  27. Arce JC, La Marca A, Mirner Klein B et al (2013) Antimullerian hormone in gonadotropin releasing-hormone antagonist cycles: prediction of ovarian response and cumulative treatment outcome in good-prognosis patients. Fertil Steril 99:1644–1653. https://doi.org/10.1016/j.fertnstert.2012.12.048

    Article  CAS  PubMed  Google Scholar 

  28. Broer SL, Mol BW, Hendriks D, Broekmans FJ (2009) The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril 91:705–714. https://doi.org/10.1016/j.fertnstert.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  29. de Vet A, Laven JS, de Jong FH et al (2002) Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 77:357–362. https://doi.org/10.1016/s0015-0282(01)02993-4

    Article  PubMed  Google Scholar 

  30. Nelson SM, Messow MC, Wallace AM et al (2011) Nomogram for the decline in serum antimullerian hormone: a population study of 9601 infertility patients. Fertil Steril 95:736-741 e731 733. https://doi.org/10.1016/j.fertnstert.2010.08.022

    Article  CAS  PubMed  Google Scholar 

  31. Gomez R, Schorsch M, Hahn T et al (2016) The influence of AMH on IVF success. Arch Gynecol Obstet 293:667–673. https://doi.org/10.1007/s00404-015-3901-0

    Article  CAS  PubMed  Google Scholar 

  32. Reichman DE, Goldschlag D, Rosenwaks Z (2014) Value of antimullerian hormone as a prognostic indicator of in vitro fertilization outcome. Fertil Steril 101:1012-1018 e1011. https://doi.org/10.1016/j.fertnstert.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  33. van Rooij IA, Broekmans FJ, Hunault CC et al (2006) Use of ovarian reserve tests for the prediction of ongoing pregnancy in couples with unexplained or mild male infertility. Reprod Biomed Online 12:182–190. https://doi.org/10.1016/s1472-6483(10)60859-0

    Article  PubMed  Google Scholar 

  34. Penarrubia J, Fabregues F, Manau D et al (2005) Basal and stimulation day 5 anti-Mullerian hormone serum concentrations as predictors of ovarian response and pregnancy in assisted reproductive technology cycles stimulated with gonadotropin-releasing hormone agonist–gonadotropin treatment. Hum Reprod 20:915–922. https://doi.org/10.1093/humrep/deh718

    Article  CAS  PubMed  Google Scholar 

  35. Mutlu MF, Erdem M, Erdem A et al (2013) Antral follicle count determines poor ovarian response better than anti-Mullerian hormone but age is the only predictor for live birth in in vitro fertilization cycles. J Assist Reprod Genet 30:657–665. https://doi.org/10.1007/s10815-013-9975-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Meng Y, Jiang X et al (2019) IVF outcomes of women with discrepancies between age and serum anti-Mullerian hormone levels. Reprod Biol Endocrinol 17:58. https://doi.org/10.1186/s12958-019-0498-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goswami M, Nikolaou D (2017) Is AMH level, independent of age, a predictor of live birth in IVF? J Hum Reprod Sci 10:24–30. https://doi.org/10.4103/jhrs.JHRS_86_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. La Marca A, Nelson SM, Sighinolfi G et al (2011) Anti-Mullerian hormone-based prediction model for a live birth in assisted reproduction. Reprod Biomed Online 22:341–349. https://doi.org/10.1016/j.rbmo.2010.11.005

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZYJ manuscript draft, data analysis and interpretation. WLL and ZSJ text revision. ZCL oversaw the study design. HQH and LAH concept, design, text revision, and final approval.

Corresponding authors

Correspondence to Qiaohua He or Aihua Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

This study received approval from the Ethics Committee of reproductive Hospital of Henan Provincial People’s Hospital. The authors confirmed that all methods were performed in accordance with the relevant guidelines and reregulation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

404_2021_6108_MOESM1_ESM.tif

Supplementary Fig S1. The ROC curve analysis of the AMH predictive ability of reproductive outcomes for Group 3 and Group 4. The results of the receiver operating characteristic (ROC) curve analysis of the anti-Müllerian hormone (AMH) predictive ability of reproductive outcomes are plotted. CI: Confidence interval. (a) ROC curve analysis of the AMH prediction of clinical pregnancy in patients in Group 3. The area under the curve (AUC) for AMH levels predicting clinical pregnancy was 0.535 (95% CI 0.508–0.562, p = 0.010). (b) ROC curve analysis for AMH prediction of the live birth in patients in Group 3. The AUC for AMH levels predicting the live birth was 0.536 (95% CI 0.510–0.561, p = 0.006). (c) ROC curve analysis for AMH prediction of the clinical pregnancy in patients in Group 4. The AUC for AMH levels predicting the clinical pregnancy was 0.55 (95% CI 0.515–0.586, p = 0.005). (d) ROC curve analysis of AMH prediction of the live birth in patients in Group 4. The AUC for AMH levels predicting the live birth was 0.562 (95% CI 0.527–0.598, p = 0.001). Group 3: 30–34 years (n = 3600); Group 4: 35–39 years (n = 1915). (TIF 7047 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, L., Zhao, S. et al. Predictive value of anti-Müllerian hormone on pregnancy outcomes in in-vitro fertilization/intracytoplasmic single sperm injection patients at different ages. Arch Gynecol Obstet 304, 1611–1620 (2021). https://doi.org/10.1007/s00404-021-06108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06108-5

Keywords

Navigation