Skip to main content

Advertisement

Log in

Maternal, fetal and neonatal consequences associated with the use of crack cocaine during the gestational period: a systematic review and meta-analysis

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

Crack cocaine consumption is one of the main public health challenges with a growing number of children intoxicated by crack cocaine during the gestational period. The primary goal is to evaluate the accumulating findings and to provide an updated perspective on this field of research.

Methods

Meta-analyses were performed using the random effects model, odds ratio (OR) for categorical variables and mean difference for continuous variables. Statistical heterogeneity was assessed using the I-squared statistic and risk of bias was assessed using the Newcastle–Ottawa Quality Assessment Scale. Ten studies met eligibility criteria and were used for data extraction.

Results

The crack cocaine use during pregnancy was associated with significantly higher odds of preterm delivery [odds ratio (OR), 2.22; 95% confidence interval (CI), 1.59–3.10], placental displacement (OR, 2.03; 95% CI 1.66–2.48), reduced head circumference (− 1.65 cm; 95% CI − 3.12 to − 0.19), small for gestational age (SGA) (OR, 4.00; 95% CI 1.74–9.18) and low birth weight (LBW) (OR, 2.80; 95% CI 2.39–3.27).

Conclusion

This analysis provides clear evidence that crack cocaine contributes to adverse perinatal outcomes. The exposure of maternal or prenatal crack cocaine is pointedly linked to LBW, preterm delivery, placental displacement and smaller head circumference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garcia RCT, Dati LMM, Fukuda S et al (2012) Neurotoxicity of anhydroecgonine methyl ester, a crack cocaine pyrolysis product. Toxicol Sci 128:223–234

    Article  PubMed  CAS  Google Scholar 

  2. Hatsukami DK, Fischman MW (1996) Crack cocaine and cocaine hydrochloride. Are the differences myth or reality? JAMA 276:1580–1588

    Article  PubMed  CAS  Google Scholar 

  3. Ribeiro M, Dunn J, Sesso R et al (2006) Causes of death among crack cocaine users. Rev Bras Psiquiatr 28:196–202

    Article  PubMed  Google Scholar 

  4. Narvaez JCM, Jansen K, Pinheiro RT et al (2014) Violent and sexual behaviors and lifetime use of crack cocaine: a population-based study in Brazil. Soc Psychiatry Psychiatr Epidemiol 49:1249–1255

    Article  PubMed  Google Scholar 

  5. Friedman AS, Glassman K, Terras BA (2001) Violent behavior as related to use of marijuana and other drugs. J Addict Dis 20:49–72

    Article  PubMed  CAS  Google Scholar 

  6. Riezzo I, Fiore C, De Carlo D et al (2012) Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem 19:5624–5646

    Article  PubMed  CAS  Google Scholar 

  7. Duailibi LB, Ribeiro M, Laranjeira R (2008) Profile of cocaine and crack users in Brazil. Cad Saude Publ 24:s545–s557

    Article  Google Scholar 

  8. Bell GL, Lau K (1995) Perinatal and neonatal issues of substance abuse. Pediatr Clin North Am 42:261–281

    Article  PubMed  CAS  Google Scholar 

  9. Ganapathy V (2011) Drugs of abuse and human placenta. Life Sci 88:926–930

    Article  PubMed  CAS  Google Scholar 

  10. Richardson GA, Goldschmidt L, Larkby C (2007) Effects of prenatal cocaine exposure on growth: a longitudinal analysis. Pediatrics 120:e1017–e1027

    Article  PubMed  Google Scholar 

  11. Aghamohammadi A, Zafari M (2016) Crack abuse during pregnancy: maternal, fetal and neonatal complication. J Matern Fetal Neonatal Med 29:795–797

    Article  PubMed  Google Scholar 

  12. Burkett G, Bandstra ES, Cohen J et al (1990) Cocaine-related maternal death. Am J Obstet Gynecol 163:40–41

    Article  PubMed  CAS  Google Scholar 

  13. Dow-Edwards D (2010) Sex differences in the effects of cocaine abuse across the life span. Physiol Behav 100(3):208–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Legido A, Clancy RR, Spitzer AR, Finnegan LP (1992) Electroencephalographic and behavioral-state studies in infants of cocaine-addicted mothers. Am J Dis Child 146:748–752

    PubMed  CAS  Google Scholar 

  15. Kessler F, Pechansky F (2008) A psychiatric view on the crack phenomenon nowadays. RevKesslerista Psiquiatr do Rio Gd do Sul 30:96–98

    Article  Google Scholar 

  16. Volpe JJ (1992) Effect of cocaine use on the fetus. N Engl J Med 327:399–407

    Article  PubMed  CAS  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J et al (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341

    Article  PubMed  Google Scholar 

  18. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies. J Am Med Assoc 283:2008–2012

    Article  CAS  Google Scholar 

  19. Wells G, Shea B, O’Connell D, et al The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 27 Jun 2017

  20. Wu QJ, Yang Y, Vogtmann E et al (2013) Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol 24:1079–1087

    Article  PubMed  CAS  Google Scholar 

  21. Addis A, Moretti ME, Ahmed Syed F et al (2001) Fetal effects of cocaine: an updated meta-analysis. Reprod Toxicol 15:341–369

    Article  PubMed  CAS  Google Scholar 

  22. De Castro AP, Cristina M, Guilam R et al (2013) Violência na velhice: abordagens em periódicos nacionais indexados Violence in old age: the issue addressed in indexed national journals. Ciência e Saúde Coletiva 18:1283–1292

    Article  Google Scholar 

  23. Frank DA, Augustyn M, Knight WG, Pell T, Zuckerman B (2001) Growth, development, and behavior in early childhood following prenatal cocaine exposure: a systematic review. JAMA 285:1613–1625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gouin K, Murphy K, Shah PS (2011) Effects of cocaine use during pregnancy on low birthweight and preterm birth: Systematic review and metaanalyses. Am J Obstet Gynecol 204:340.e1–340.e12

    Article  CAS  Google Scholar 

  25. Kosofsky BE, Wilkins AS, Gressens P, Evrard P (1994) Transplacental cocaine exposure: a mouse model demonstrating neuroanatomic and behavioral abnormalities. J Child Neurol 9:234–241

    Article  PubMed  CAS  Google Scholar 

  26. McCarthy DM, Kabir ZD, Bhide PG, Kosofsky BE (2014) Effects of prenatal exposure to cocaine on brain structure and function. Prog Brain Res 211:277–289

    Article  PubMed  CAS  Google Scholar 

  27. Fajemirokun-Odudeyi O, Lindow SW (2004) Obstetric implications of cocaine use in pregnancy: a literature review. Eur J Obstet Gynecol Reprod Biol 112:2–8

    Article  PubMed  CAS  Google Scholar 

  28. Burns K, Chethik L, Burns WJ, Clark R (1991) Dyadic disturbances in cocaine???abusing mothers and their infants. J Clin Psychol 47:316–319

    Article  PubMed  CAS  Google Scholar 

  29. Eiden RD, Stevens A, Schuetze P, Dombkowski LE (2006) Conceptual model for maternal behavior among polydrug cocaine-using mothers: the role of postnatal cocaine use and maternal depression. Psychol Addict Behav 20:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tronick EZ, Messinger DS, Weinberg MK et al (2005) Cocaine exposure is associated with subtle compromises of infants’ and mothers’ social-emotional behavior and dyadic features of their interaction in the face-to-face still-face paradigm. Dev Psychol 41:711–722

    Article  PubMed  CAS  Google Scholar 

  31. Black M, Nair P, Kight C et al (1994) Parenting and early development among children of drug abusing women: effects of home intervention. Pediatrics 94(4 Pt 1):440–448

    PubMed  CAS  Google Scholar 

  32. Minnes S, Singer L, Min MO et al (2014) Effects of prenatal cocaine/polydrug exposure on substance use by age 15. Drug Alcohol Depend 134:201–210

    Article  PubMed  Google Scholar 

  33. Minnes S, Singer LT, Arendt R, Satayathum S (2005) Effects of prenatal cocaine/polydrug use on maternal-infant feeding interactions during the first year of life. Nat Rev Mol Cell Biol 26:194–200

    Google Scholar 

  34. Garland OH (1895) Fatal acute poisoning by cocaine. Lancet 146:1104–1105

    Article  Google Scholar 

  35. Almond D, Chay K, Lee D (2005) The Costs of Low Birth Weight. Q J Econ 120:1031–1083

    Google Scholar 

  36. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ Br Med J 311:171

    Article  CAS  Google Scholar 

  37. Black SE, Devereux JP, Salvanes KG (2007) From the cradle to the labor market? the effect of birth weight on adult outcomes. Q J Econ 122(1):409–439

    Article  Google Scholar 

  38. Schulz LC (2010) The Dutch hunger winter and the developmental origins of health and disease. Proc Natl Acad Sci 107:16757–16758

    Article  PubMed  Google Scholar 

  39. Mazumder B, Almond D (2011) Health capital and the prenatal environment: the effect of maternal fasting during pregnancy. FRB of Chicago Working Paper No. 2007–22 1–74

  40. de Rooij SR, Wouters H, Yonker JE et al (2010) Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci 107:16881–16886

    Article  PubMed  Google Scholar 

  41. Stein Z, Susser M, Saenger G, Marolla F (1975) Famine and human development: the Dutch hunger winter of 1944–1945. Oxford University Press, New York, NY, US, pp 1–284

    Google Scholar 

  42. Singer LT, Nelson S, Short E et al (2008) Prenatal cocaine exposure: drug and environmental effects at 9 years. J Pediatr 153:105–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Thompson BL, Levitt P, Stanwood GD (2009) Prenatal exposure to drugs: effects on brain development and implications for policy and education. 2 Nat Rev Neurosci 10:303–312

    Article  CAS  Google Scholar 

  44. Minnes S, Singer LT, Kirchner HL et al (2010) The effects of prenatal cocaine exposure on problem behavior in children 4-10 years. Neurotoxicol Teratol 32:443–451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Minnes S, Min M, Wu M et al (2014) Executive function in adolescents with prenatal exposure to cocaine. Neurotoxicol Teratol 43:84

    Article  CAS  Google Scholar 

  46. Greenwald MK, Chiodo LM, Hannigan JH et al (2011) Teens with heavy prenatal cocaine exposure respond to experimental social provocation with escape not aggression. Neurotoxicol Teratol 33:198–204

    Article  PubMed  CAS  Google Scholar 

  47. Richardson GA, Larkby C, Goldschmidt L, Day NL (2013) Adolescent initiation of drug use: effects of prenatal cocaine exposure. J Am Acad Child Adolesc Psychiatry 52:37–46

    Article  PubMed  Google Scholar 

  48. Goldenberg RL, Culhane JF, Iams JD, Romero R (2009) Preterm birth 1: epidemiology and causes of preterm birth. Obstet Anesth Dig 29:6–7

    Article  Google Scholar 

  49. Purisch SE, Gyamfi-Bannerman C (2017) Epidemiology of preterm birth. Semin Perinatol 41(7):387–391

    Article  PubMed  Google Scholar 

  50. Rees S, Inder T (2005) Fetal and neonatal origins of altered brain development. Early Hum Dev 81:753–761

    Article  PubMed  Google Scholar 

  51. Jobe AH, Bancalari E (2001) NICHD/NHLBI/ORD workshop summary. Am J Respir Crit Care Med 163:1723–1729

    Article  PubMed  CAS  Google Scholar 

  52. Saigal S, Doyle LW (2008) [Commentary on] The lancet series on preterm birth (3): an overview of mortality and sequelae of preterm birth from infancy to adulthood. Child Care Heal Dev 34:407–408

    Google Scholar 

  53. Doyle LW, Saigal S (2009) Long-term outcomes of very preterm or tiny infants. Neoreviews 10:e130–e137

    Article  Google Scholar 

  54. Morgan MA, Honnebier MBOM, Mecenas C, Nathanielsz PW (1996) Cocaine’s effect on plasma oxytocin concentrations in the baboon during late pregnancy. Am J Obstet Gynecol 174:1026–1027

    Article  PubMed  CAS  Google Scholar 

  55. Williams SK, Johns JM (2014) Prenatal and gestational cocaine exposure: effects on the oxytocin system and social behavior with implications for addiction. Pharmacol Biochem Behav 119:10–21

    Article  PubMed  CAS  Google Scholar 

  56. Petitti DB, Coleman C (1990) Cocaine and the risk of low birth weight. Am Public Heal Assoc 80:25–28

    Article  CAS  Google Scholar 

  57. Glatt SJ, Bolanos CA, Trksak GH et al (2000) Prenatal cocaine exposure alters behavioral and neurochemical sensitization to amphetamine in adult rats. Neuropharmacology 39:599–610

    Article  PubMed  CAS  Google Scholar 

  58. Chae S-M, Covington CY (2009) Biobehavioral outcomes in adolescents and young adults prenatally exposed to cocaine: evidence from animal models. Biol Res Nurs 10:318–330

    Article  PubMed  CAS  Google Scholar 

  59. Buckingham-Howes S, Berger SS, Scaletti LA, Black MM (2013) Systematic review of prenatal cocaine exposure and adolescent development. Pediatrics 131:e1917–e1936

    Article  PubMed  PubMed Central  Google Scholar 

  60. Behnke M, Smith VC (2013) Prenatal substance abuse: short- and long-term effects on the exposed fetus. Pediatrics 131:e1009–e1024

    Article  PubMed  Google Scholar 

  61. Overstreet DH, Moy SS, Lubin DA et al (2000) Enduring effects of prenatal cocaine administration on emotional behavior in rats. Physiol Behav 70:149–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu J, Lester BM (2011) Reconceptualizing in a dual-system model the effects of prenatal cocaine exposure on adolescent development: a short review. Int J Dev Neurosci 29:803–809

    Article  PubMed  CAS  Google Scholar 

  63. Lambert BL, Bauer CR (2012) Developmental and behavioral consequences of prenatal cocaine exposure: a review. J Perinatol 32:819–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Henderson JJ, McWilliam OA, Newnham JP, Pennell CE (2012) Preterm birth aetiology 2004-2008. Maternal factors associated with three phenotypes: spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. J Matern Fetal Neonatal Med 25:642–647

    Article  PubMed  Google Scholar 

  65. Smith LK, Draper ES, Manktelow BN et al (2007) Socioeconomic inequalities in very preterm birth rates. Arch Dis Child Fetal Neonatal Ed 92:F11–F14

    Article  PubMed  CAS  Google Scholar 

  66. Ion R, Bernal AL (2015) Smoking and preterm birth. Reprod Sci 22:918–926

    Article  PubMed  CAS  Google Scholar 

  67. Nordstrom-Klee B, Delaney-Black V, Covington C et al (2002) Growth from birth onwards of children prenatally exposed to drugs: a literature review. Neurotoxicol Teratol 24:481–488

    Article  PubMed  CAS  Google Scholar 

  68. Treit S, Zhou D, Chudley AE et al (2016) Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PLoS One 11:1–15

    Article  CAS  Google Scholar 

  69. Rollins JD, Collins JS, Holden KR (2010) United States head circumference growth reference charts: birth to 21 years. J Pediatr 156(6):907–913.e2

    Article  PubMed  Google Scholar 

  70. Gale CR, Walton S, Martyn CN (2003) Foetal and postnatal head growth and risk of cognitive decline in old age. Brain Epub 126(Pt 10):2273–2278

    Article  Google Scholar 

  71. Gale CR, O’Callaghan FJ, Godfrey KM et al (2004) Critical periods of brain growth and cognitive function in children. Brain 127:321–329

    Article  PubMed  Google Scholar 

  72. Gale CR, O’Callaghan FJ, Bredow M, Martyn CN (2006) The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics 118:1486–1492

    Article  PubMed  Google Scholar 

  73. Bray PF, Shields WD, Wolcott GJ, Madsen JA (1968) Occipitofrontal head circumference—an accurate measure of intracranial volume. J Pediatr 75:3–5

    Google Scholar 

  74. Bartholomeusz HH, Courchesne E, Karns CM (2002) Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics 33:232–238

    Article  Google Scholar 

  75. Holden K, Lyons M (2009) Acquired microcephaly. In: Maria BL E (ed) Current management in child neurology, 4th ed. Canada

  76. Williams CA, Dagli A, Battaglia A (2008) Genetic disorders associated with macrocephaly. Am J Med Genet Part A 146:2023–2037

    Article  CAS  Google Scholar 

  77. He N, Lidow MS (2004) Cerebral cortical abnormalities seen in a non-human primate model of prenatal cocaine exposure are not related to vasoconstriction. Neurotoxicology 25:419–432

    Article  PubMed  CAS  Google Scholar 

  78. Jones L, Fischer I, Levitt P (1996) Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cereb Cortex 6:431–445

    Article  PubMed  CAS  Google Scholar 

  79. Lidow MS, Song ZM (2001) Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol 435:263–275

    Article  PubMed  CAS  Google Scholar 

  80. Lidow MS, Song ZM (2001) Effect of cocaine on cell proliferation in the cerebral wall of monkey fetuses. Cereb Cortex 11:545–551

    Article  PubMed  CAS  Google Scholar 

  81. Baraban SC, Wenzel HJ, Castro PA, Schwartzkroin PA (1999) Hippocampal dysplasia in rats exposed to cocaine in utero. Dev Brain Res 117:213–217

    Article  CAS  Google Scholar 

  82. Mcmurray MS, Oguz I, Rumple AM et al (2015) Effects of prenatal cocaine exposure on early postnatal rodent brain structure and diffusion properties. Neurotoxicol Teratol 47:80–88

    Article  PubMed  CAS  Google Scholar 

  83. Wiggins RC, Ruiz B (1990) Development under the influence of cocaine. II. Comparison of the effects of maternal cocaine and associated undernutrition on brain myelin development in the offspring. Metab Brain Dis 5:101–109

    Article  PubMed  CAS  Google Scholar 

  84. Bateman DA, Chiriboga CA (2000) Dose-response effect of cocaine on newborn head circumference. Pediatrics 106:E33

    Article  PubMed  CAS  Google Scholar 

  85. Areal LB, Rodrigues LCM, Andrich F et al (2015) Behavioural, biochemical and molecular changes induced by chronic crack-cocaine inhalation in mice: the role of dopaminergic and endocannabinoid systems in the prefrontal cortex. Behav Brain Res 290:8–16

    Article  PubMed  CAS  Google Scholar 

  86. Sakornbut E, Leeman L, Fontaine P (2007) 5—Late pregnancy bleeding. Am Fam Physician 75:1199–1206

    PubMed  Google Scholar 

  87. Fiori O, Verstraete L, Berkane N (2007) Risk factors of abruptio placentae among Peruvian women. Am J Obstet Gynecol 196:e15

    Article  PubMed  Google Scholar 

  88. Ananth CV, Getahun D, Peltier MR, Smulian JC (2006) Placental abruption in term and preterm gestations: evidence for heterogeneity in clinical pathways. Obstet Gynecol 107:785–792

    Article  PubMed  Google Scholar 

  89. Ananth CV, Smulian JC, Demissie K et al (2001) Placental abruption among singleton and twin births in the United States: risk factor profiles. Am J Epidemiol 153:771–778

    Article  PubMed  CAS  Google Scholar 

  90. Ananth CV, Savitz DA, Williams MA (1996) Placental abruption and its association with hypertension and prolonged rupture of membranes: a methodologic review and meta-analysis. Obstet Gynecol 88:309–318

    Article  PubMed  CAS  Google Scholar 

  91. Ananth CV, Savitz DA, Luther ER (1996) Maternal cigarette smoking as a risk factor for placental abruption, placenta previa, and uterine bleeding in pregnancy. Am J Epidemiol 144:881–889

    Article  PubMed  CAS  Google Scholar 

  92. Ananth CV, Savitz DA, Bowes WA, Luther ER (1997) Influence of hypertensive disorders and cigarette smoking on placental abruption and uterine bleeding during pregnancy. Br J Obstet Gynaecol 104:572–578

    Article  PubMed  CAS  Google Scholar 

  93. Ananth CV, Oyelese Y, Srinivas N et al (2004) Preterm premature rupture of membranes, intrauterine infection, and oligohydramnios: risk factors for placental abruption. Obstet Gynecol 104:71–77

    Article  PubMed  Google Scholar 

  94. Sheiner E, Shoham-Vardi I, Hallak M et al (2003) Placental abruption in term pregnancies: clinical significance and obstetric risk factors. J Matern Fetal Neonatal Med 13:45–49

    Article  PubMed  CAS  Google Scholar 

  95. Salihu HM, Bekan B, Aliyu MH et al (2005) Perinatal mortality associated with abruptio placenta in singletons and multiples. Am J Obstet Gynecol 193:198–203

    Article  PubMed  Google Scholar 

  96. Bateman DA, Ng SK, Hansen CA, Heagarty MC (1993) The effects of intrauterine cocaine exposure in newborns. Rev Mal Respir 83:190–193

    CAS  Google Scholar 

  97. Cherukuri R, Minkoff H, Feldman J et al (1988) A cohort study of alkaloidal cocaine (“crack”) in pregnancy. Obstet Gynecol 72:147–151

    PubMed  CAS  Google Scholar 

  98. Eyler FD, Behnke M, Conlon M et al (1994) Prenatal cocaine use: a comparison of neonates matched on maternal risk factors. Neurotoxicol Teratol 16:81–87

    Article  PubMed  CAS  Google Scholar 

  99. Sprauve ME, Lindsay MK, Herbert S, Graves W (1997) Adverse perinatal outcome in parturients who use crack cocaine. Obstet Gynecol 89:674–678

    Article  PubMed  CAS  Google Scholar 

  100. Aliyu MH, Lynch O, Wilson RE et al (2011) Association between tobacco use in pregnancy and placenta-associated syndromes: a population-based study. Arch Gynecol Obstet 283:729–734

    Article  PubMed  CAS  Google Scholar 

  101. Agarwal R, Gupta B, Radhakrishnan G (2011) Rupture of intrapartum unscarred uterus at the fundus: a complication of passive cocaine abuse? Arch Gynecol Obstet 283:53–54

    Article  PubMed  Google Scholar 

  102. Wu L, Yan J, Qu SC et al (2012) Abnormal regulation for progesterone production in placenta with prenatal cocaine exposure in rats. Placenta 33:977–981

    Article  PubMed  CAS  Google Scholar 

  103. Lockwood CJ, Krikun G, Papp C et al (1994) The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann N Y Acad Sci 734:57–79

    Article  PubMed  CAS  Google Scholar 

  104. Moore KL (1988) Formation of the bilaminar embryo. In: Wonsiewicz M (ed) The developing human: clinically oriented embryology, vol 4. W.B. Saunders, Philadelphia, pp 38–49

  105. Pritchard JA, Wright MR (1959) Pathogenesis of hypofibrinogenemia in placental abruption. N Engl J Med 261:218–222

    Article  PubMed  CAS  Google Scholar 

  106. Chasnoff IJ, Lewis DE, Griffith DR, Willey S (1989) Cocaine and pregnancy: clinical and toxicological implications for the neonate. Clin Chem 35:1276–1278

    PubMed  CAS  Google Scholar 

  107. Behnke M, Eyler FD, Garvan CW, Wobie K (2001) The search for congenital malformations in newborns with fetal cocaine exposure. Pediatrics 107:E74

    Article  PubMed  CAS  Google Scholar 

  108. Garcia RCT, Torres LH, Balestrin NT et al (2017) Anhydroecgonine methyl ester, a cocaine pyrolysis product, may contribute to cocaine behavioral sensitization. Toxicology 376:44–50

    Article  PubMed  CAS  Google Scholar 

  109. Jacob P, Jones RT, Benowitz NL et al (1990) Cocaine smokers excrete a pyrolysis product, anhydroecgonine methyl ester. J Toxicol Clin Toxicol 28:121–125

    Article  PubMed  Google Scholar 

  110. Kintz P, Cirimele V, Sengler C, Mangin P (1995) Testing human hair and urine for anhydroecgonine methyl ester, a pyrolysis product of cocaine. J Anal Toxicol 19:479–482

    Article  PubMed  CAS  Google Scholar 

  111. Martin BR, Lue LP, Boni JP (1989) Pyrolysis and volatilization of cocaine. J Anal Toxicol 13:158–162

    Article  PubMed  CAS  Google Scholar 

  112. Toennes SW, Fandiño AS, Hesse F-J, Kauert GF (2003) Artifact production in the assay of anhydroecgonine methyl ester in serum using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 792:345–351

    Article  PubMed  CAS  Google Scholar 

  113. Toennes SW, Fandiño AS, Kauert G (1999) Gas chromatographic-mass spectrometric detection of anhydroecgonine methyl ester (methylecgonidine) in human serum as evidence of recent smoking of crack. J Chromatogr B Biomed Sci Appl 735:127–132

    Article  PubMed  CAS  Google Scholar 

  114. Gomes EF, Lipaus IFS, Martins CW et al (2017) Anhydroecgonine methyl ester (AEME), a product of cocaine pyrolysis. Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats, Neurotox Res

    Google Scholar 

  115. UNODC (2016) United Nations office on drugs and crime. In: Report WD (ed) UN office on drugs and crime. World Drug Report, Vienna

    Google Scholar 

  116. Miguel AQC, Madruga CS, Cogo-Moreira H et al (2016) Contingency management is effective in promoting abstinence and retention in treatment among crack cocaine users in Brazil: a randomized controlled trial. Psychol Addict Behav 30:536–543

    Article  PubMed  PubMed Central  Google Scholar 

  117. Des Jarlais DC, McKnight C, Arasteh K et al (2014) A perfect storm: crack cocaine, HSV-2, and HIV among non-injecting drug users in New York city. Subst Use Misuse 49:783–792

    Article  PubMed  PubMed Central  Google Scholar 

  118. DeBeck K, Buxton J, Kerr T et al (2011) Public crack cocaine smoking and willingness to use a supervised inhalation facility: implications for street disorder. Subst Abuse Treat Prev Policy 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sterk CE, Elifson KW, DePadilla L (2014) Neighbourhood structural characteristics and crack cocaine use: exploring the impact of perceived neighbourhood disorder on use among African Americans. Int J Drug Policy 25:616–623

    Article  PubMed  Google Scholar 

  120. Parker MA, Anthony JC (2014) Should anyone be riding to glory on the now-descending limb of the crack-cocaine epidemic curve in the United States? Drug Alcohol Depend 138:225–228

    Article  PubMed  PubMed Central  Google Scholar 

  121. Werb D, Debeck K, Kerr T et al (2010) Modelling crack cocaine use trends over 10 years in a Canadian setting. Drug Alcohol Rev 29:271–277

    Article  PubMed  PubMed Central  Google Scholar 

  122. Moreira MM, Barbosa GL, Laranjeira R, Mitsuhiro SS (2014) Alcohol and Crack cocaine use in women: a 14-year cross-sectional study. J Addict Dis 33:9–14

    Article  PubMed  Google Scholar 

  123. Parcianello RR, Mardini V, Ceresér KMM et al (2018) Increased cocaine and amphetamine-regulated transcript cord blood levels in the newborns exposed to crack cocaine in utero. Psychopharmacol 235(1):215–222

    Article  CAS  Google Scholar 

  124. Mardini V, Rohde LA, Ceresér KM et al (2017) TBARS and BDNF levels in newborns exposed to crack/cocaine during pregnancy: a comparative study. Rev Bras Psiquiatr 39:263–266

    Article  PubMed  Google Scholar 

  125. Jones W (2015) Cocaine use and the breastfeeding mother. Pract Midwife 18:19–22

    PubMed  Google Scholar 

  126. Morrow CE, Culbertson JL, Accornero VH et al (2006) Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure. Dev Neuropsychol 30:905–931

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bandstra ES, Vogel AL, Morrow CE et al (2004) Severity of prenatal cocaine exposure and child language functioning through age 7 years: a longitudinal latent growth curve analysis. Subst Use Misuse 39:25–59

    Article  PubMed  PubMed Central  Google Scholar 

  128. Warner TD, Behnke M, Hou W et al (2006) Predicting caregiver-reported behavior problems in cocaine-exposed children at 3 years. J Dev Behav Pediatr 27:83–92

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hess ARB, Menezes CB, de Almeida RMM (2018) Inhibitory control and impulsivity levels in women crack users. Subst Use Misuse 53(6):972–979

    Article  PubMed  Google Scholar 

  130. Levandowski ML, Hess ARB, Grassi-Oliveira R, de Almeida RMM (2016) Plasma interleukin-6 and executive function in crack cocaine-dependent women. Neurosci Lett 628:85–90

    Article  PubMed  CAS  Google Scholar 

  131. Duff P, Tyndall M, Buxton J et al (2013) Sex-for-crack exchanges: associations with risky sexual and drug use niches in an urban Canadian city. Harm Reduct J 10:29

    Article  PubMed  PubMed Central  Google Scholar 

  132. Vernaglia TVC, Vieira RA de MS, Cruz MS (2015) Crack cocaine users living on the streets – gender characteristics. Cien Saude Colet 20:1851–1859

  133. Kopetz CE, Collado A, Lejuez CW (2015) When the end (automatically) justifies the means: automatic tendency toward sex exchange for crack cocaine. Motiv Sci 1:233–244

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chouteau M, Namerow PB, Leppert P (1988) The effect of cocaine abuse on birth weight and gestational age. Obstet Gynecol 72(3 Pt 1):351–354

    PubMed  CAS  Google Scholar 

  135. Eyler FD, Behnke M, Conlon M et al (1998) Birth outcome from a prospective, matched study of prenatal crack/cocaine use: I. Interactive and dose effects on health and growth. Pediatrics 101:229–237

    Article  PubMed  CAS  Google Scholar 

  136. Richardson GA, Hamel SC, Goldschmidt L, Day NL (1999) Growth of infants prenatally exposed to cocaine/crack: comparison of a prenatal care and a no prenatal care sample. Pediatrics 104:e18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JFS: data collection, project development, manuscript writing and editing, data administration, data interpretation. CMBC: data collection, project development, manuscript writing and editing, data administration, data interpretation. MD: manuscript editing. DLGG: manuscript editing. CQT: manuscript editing. FTB: project development, data administration, data interpretation, data analysis, statistical analysis. AKS: manuscript editing. OWC: project development, scientific knowledge, data collection, project development manuscript writing and editing.

Corresponding author

Correspondence to Olagide Wagner de Castro.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Jucilene Freitas dos Santos and Cibelle de Melo Bastos Cavalcante equal participation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.F., de Melo Bastos Cavalcante, C., Barbosa, F.T. et al. Maternal, fetal and neonatal consequences associated with the use of crack cocaine during the gestational period: a systematic review and meta-analysis. Arch Gynecol Obstet 298, 487–503 (2018). https://doi.org/10.1007/s00404-018-4833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-018-4833-2

Keywords

Navigation