Skip to main content
Log in

Analysis of differentially expressed genes between endometrial carcinosarcomas and endometrioid endometrial carcinoma by bioinformatics

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to explore the underlying molecular mechanisms of endometrial carcinosarcomas (ECS) and endometrioid endometrial carcinoma (EEC) by bioinformatics analysis.

Methods

Gene expression profile GSE33723 was downloaded from the Gene Expression Omnibus. A total of 15 ECS and 23 EEC samples were used to identify the differentially expressed genes (DEGs) by significance analysis of microarrays. After construction of protein–protein interaction (PPI) network, Gene Ontology (GO) functional and pathway enrichment analyses of DEGs were performed, followed by network module analysis.

Results

A total of 49 DEGs were identified between EEC and ECS samples. In the PPI network, TP53 (tumor protein p53) was selected as the highest degree, hub centrality and betweenness. The top 10 enriched GO terms including regulation of cell death and top 10 significant pathways including cell cycle were selected. After network module analysis, PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1) and AKT2 (v-akt murine thymoma viral oncogene homolog 2) were selected as the co-expressed genes in the states of ECS while STAT3 (signal transducer and activator of transcription 3) and JAZF (JAZF zinc finger 1) were selected as the co-expressed genes in the states of EEC.

Conclusions

The DEGs, such as TP53, PIK3R1 and AKT2 may be used for targeted diagnosis and treatment of ECS while STAT3 and JAZF1 may be served as a target for EEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D’angelo E, Prat J (2010) Uterine sarcomas: a review. Gynecol Oncol 116:131–139

    Article  PubMed  Google Scholar 

  2. Barak F, Kalichman L, Gdalevich M et al (2013) The influence of early diagnosis of endometrioid endometrial cancer on disease stage and survival. Arch Gynecol Obstet 288:1361–1364

    Article  CAS  PubMed  Google Scholar 

  3. Mccluggage W (2002) Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int J Gynecol Cancer 12:687–690

    Article  CAS  PubMed  Google Scholar 

  4. Wolfson AH, Brady MF, Rocereto T et al (2007) A gynecologic oncology group randomized phase III trial of whole abdominal irradiation (WAI) vs. cisplatin-ifosfamide and mesna (CIM) as post-surgical therapy in stage I–IV carcinosarcoma (CS) of the uterus. Gynecol Oncol 107:177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menczer J, Levy T, Piura B et al (2005) A comparison between different postoperative treatment modalities of uterine carcinosarcoma. Gynecol Oncol 97:166–170

    Article  PubMed  Google Scholar 

  6. Bansal N, Yendluri V, Wenham RM (2009) The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies. Cancer Control 16:8

    PubMed  Google Scholar 

  7. Oda K, Stokoe D, Taketani Y, Mccormick F (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65:10669–10673

    Article  CAS  PubMed  Google Scholar 

  8. Catasus L, Gallardo A, Cuatrecasas M, Prat J (2009) Concomitant PI3K–AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod Pathol 22:522–529

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Xu D-B, Zhao X-L, Hao T-Y (2013) Combination analysis of Bub1 and Mad2 expression in endometrial cancer: act as a prognostic factor in endometrial cancer. Arch Gynecol Obstet 288:155–165

    Article  CAS  PubMed  Google Scholar 

  10. Jongen V, Briët J, De Jong R et al (2009) Expression of estrogen receptor-alpha and-beta and progesterone receptor-A and-B in a large cohort of patients with endometrioid endometrial cancer. Gynecol Oncol 112:537–542

    Article  CAS  PubMed  Google Scholar 

  11. Wu W, Slomovitz BM, Celestino J, Chung L, Thornton A, Lu KH (2003) Coordinate expression of Cdc25B and ER-α is frequent in low-grade endometrioid endometrial carcinoma but uncommon in high-grade endometrioid and nonendometrioid carcinomas. Cancer Res 63:6195–6199

    CAS  PubMed  Google Scholar 

  12. Romero-Pérez L, Castilla M, López-García M et al (2013) Molecular events in endometrial carcinosarcomas and the role of high mobility group AT-hook 2 in endometrial carcinogenesis. Hum Pathol 44:244–254

    Article  PubMed  Google Scholar 

  13. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan H, Tian Y, Yang H, Liu G, Nie L (2002) A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor. Arch Microbiol 177:274–278

    Article  CAS  PubMed  Google Scholar 

  15. Mcclure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peri S, Navarro JD, Kristiansen TZ et al (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 32:D497–D501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  19. Kanehisa M (2002) The KEGG database. Silico Simul Biol Processes 247:103

    Google Scholar 

  20. Ahmed J, Meinel T, Dunkel M et al (2011) CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge. Nucleic Acids Res 39:D960–D967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alibés A, Yankilevich P, Díaz-Uriarte R (2007) IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinformatics 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Šubelj L, Bajec M (2011) Unfolding communities in large complex networks: combining defensive and offensive label propagation for core extraction. Phys Rev A 83:036103

    Google Scholar 

  23. Risinger JI, Dent GA, Ignar-Trowbridge D, Mclachlan JA, Tsao MS, Senterman M, Boyd J (1992) p53 gene mutations in human endometrial carcinoma. Mol Carcinog 5:250–253

    Article  CAS  PubMed  Google Scholar 

  24. Koul A, Willén R, Bendahl PO, Nilbert M, Borg (2002) Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis. Cancer 94:2369–2379

    Article  CAS  PubMed  Google Scholar 

  25. Sung C, Zheng Y, Quddus M, Kang X, Zhang ZF, Lauchlan S, Zheng W (2000) p53 as a significant prognostic marker in endometrial carcinoma. Int J Gynecol Cancer 10:119–127

    Article  PubMed  Google Scholar 

  26. Skomedal H, Kristensen GB, Nesland JM, Børresen-Dale AL, Tropé C, Holm R (1999) TP53 alterations in relation to the cell cycle-associated proteins p21, cyclin D1, CDK4, RB, MDM2, and EGFR in cancers of the uterine corpus. J Pathol 187:556–562

    Article  CAS  PubMed  Google Scholar 

  27. Milde-Langosch K, Bamberger A-M, Goemann C, Rössing E, Rieck G, Kelp B, Löning T (2001) Expression of cell-cycle regulatory proteins in endometrial carcinomas: correlations with hormone receptor status and clinicopathologic parameters. J Cancer Res Clin Oncol 127:537–544

    Article  CAS  PubMed  Google Scholar 

  28. Götte M, Greve B, Kelsch R et al (2011) The adult stem cell marker Musashi-1 modulates endometrial carcinoma cell cycle progression and apoptosis via Notch-1 and p21WAF1/CIP1. Int J Cancer 129:2042–2049

    Article  PubMed  Google Scholar 

  29. Semczuk A, Miturski R, Skomra D, Jakowicki JA (2004) Expression of the cell-cycle regulatory proteins (pRb, cyclin D1, p16INK4A and cdk4) in human endometrial cancer: correlation with clinicopathological features. Arch Gynecol Obstet 269:104–110

    Article  CAS  PubMed  Google Scholar 

  30. Cheung LW, Hennessy BT, Li J et al (2011) High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov 1:170–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang B-H, Liu L-Z (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784:150–158

    Article  CAS  PubMed  Google Scholar 

  32. Saegusa M, Hashimura M, Kuwata T, Okayasu I (2009) Requirement of the Akt/β-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of Slug. Am J Pathol 174:2107–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slomovitz BM, Coleman RL (2012) The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res 18:5856–5864

    Article  CAS  PubMed  Google Scholar 

  34. Sianou A, Galyfos G, Moragianni D, Andromidas P, Kaparos G, Baka S, Kouskouni E (2015) The role of microRNAs in the pathogenesis of endometrial cancer: a systematic review. Arch Gynecol Obstet 292:1–12

    Article  Google Scholar 

  35. Chen C, Hsieh F, Lieblein J et al (2007) Stat3 activation in human endometrial and cervical cancers. Br J Cancer 96:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang J-Z, Kong X-J, Banerjee A et al (2010) STAT3α is oncogenic for endometrial carcinoma cells and mediates the oncogenic effects of autocrine human growth hormone. Endocrinology 151:4133–4145

    Article  CAS  PubMed  Google Scholar 

  37. Koontz JI, Soreng AL, Nucci M et al (2001) Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci USA 98:6348–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jakate K, Azimi F, Ali RH et al (2012) Endometrial sarcomas: an immunohistochemical and JAZF1 re-arrangement study in low-grade and undifferentiated tumors. Mod Pathol 26:95–105

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Chen.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhang, M., Yu, H. et al. Analysis of differentially expressed genes between endometrial carcinosarcomas and endometrioid endometrial carcinoma by bioinformatics. Arch Gynecol Obstet 293, 1073–1079 (2016). https://doi.org/10.1007/s00404-015-3880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3880-1

Keywords

Navigation