Skip to main content

Advertisement

Log in

NAV2 facilitates invasion of cutaneous melanoma cells by targeting SNAI2 through the GSK-3β/β-catenin pathway

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Previous studies have identified neuron navigator 2(NAV2) as an oncogene in several human tumors. However, the NAV2 gene expression changes and its role in the pathogenesis of cutaneous melanoma have not been clearly illustrated. Further investigations of NAV2 in cutaneous melanoma may provide new mechanistic insight and treatment strategy for this disease. Through immunohistochemistry assay and bioinformatics analysis, we found that melanoma tissues showed an upregulated expression of NAV2 which correlated with poor prognosis of cutaneous melanoma. To investigate the effect of NAV2 on the proliferation and invasion of melanoma, shNAV2 and NAV2-cDNA were transfected into melanoma cell lines. NAV2 overexpression significantly promoted melanoma cell proliferation, migration and invasion, while NAV2 silencing effectively inhibited this process. The potential underlying mechanisms were investigated using bioinformatics analysis, qRT-PCR, and western blot. Results showed that NAV2-mediated invasion of melanoma cells was driven by enhanced epithelial–mesenchymal transition, which was resulted from SNAI2 upregulation via the GSK-3β/β-catenin pathway. This study suggested that NAV2 could induce melanoma proliferation and invasion by epithelial–mesenchymal transition through the GSK-3β/β-catenin-SNAI2 pathway. Our findings on the pathological mechanisms of NAV2-associated cutaneous melanoma may contribute to the development of potential therapeutic strategy for melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NAV:

Neuron navigator

SKCM:

Skin cutaneous melanoma

EMT:

Epithelial–mesenchymal transition

SNAI2:

Snail homolog 2

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

References

  1. Alves CL, Elias D, Lyng MB, Bak M, Ditzel HJ (2018) SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res 20:60. https://doi.org/10.1186/s13058-018-0988-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlsson E, Krohn K, Ovaska K, Lindberg P, Hayry V, Maliniemi P, Lintulahti A, Korja M, Kivisaari R, Hussein S, Haapasalo H, Ranki A (2013) Neuron navigator 3 alterations in nervous system tumors associate with tumor malignancy grade and prognosis. Genes Chromosom Cancer 52:191–201. https://doi.org/10.1002/gcc.22019

    Article  CAS  PubMed  Google Scholar 

  3. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891. https://doi.org/10.1038/sj.onc.1202627

    Article  CAS  PubMed  Google Scholar 

  4. Davidson B, Hellesylt E, Holth A, Danielsen HE, Skeie-Jensen T, Katz B (2017) Neuron navigator-2 and cyclin D2 are new candidate prognostic markers in uterine sarcoma. Virchows Arch 471:355–362. https://doi.org/10.1007/s00428-017-2172-5

    Article  CAS  PubMed  Google Scholar 

  5. Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK, Rocchi S, Mallavialle A, Galibert MD, Khammari A, Lacour JP, Ballotti R, Deckert M, Tartare Deckert S (2012) The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 7:e40378. https://doi.org/10.1371/journal.pone.0040378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong F, Guo Y, Niu Y, Jin J, Zhang X, Shi X, Zhang L, Li R, Chen L, Ma RZ (2017) Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget 8:315–328. https://doi.org/10.18632/oncotarget.13324

    Article  PubMed  Google Scholar 

  7. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7:re8. https://doi.org/10.1126/scisignal.2005189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu Y, Wang Z, Shi J, Wang L, Hou Z, Guo X, Tao Y, Wu X, Zhou W, Liu Y, Zhang W, Xu Y, Yang H, Xue F, Geng D (2017) Titanium particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3beta/beta-catenin signal pathway. Cell Death Dis 8:e2878. https://doi.org/10.1038/cddis.2017.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P (1998) Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol 8:573–581. https://doi.org/10.1016/S0960-9822(98)70226-X

    Article  CAS  PubMed  Google Scholar 

  10. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8–20

    Article  CAS  Google Scholar 

  11. Ishiguro H, Shimokawa T, Tsunoda T, Tanaka T, Fujii Y, Nakamura Y, Furukawa Y (2002) Isolation of HELAD1, a novel human helicase gene up-regulated in colorectal carcinomas. Oncogene 21:6387–6394. https://www.nature.com/articles/1205751

  12. Ju J, Chen A, Deng Y, Liu M, Wang Y, Wang Y, Nie M, Wang C, Ding H, Yao B, Gui T, Li X, Xu Z, Ma C, Song Y, Kvansakul M, Zen K, Zhang CY, Luo C, Fang M, Huang DCS, Allis CD, Tan R, Zeng CK, Wei J, Zhao Q (2017) NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat Commun 8:928. https://doi.org/10.1038/s41467-017-00988-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, Wang SP, Nesvizhskii AI, Chen YJ, Hong TM, Yang PC (2014) GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 33:3172–3182. https://doi.org/10.1038/onc.2013.279

    Article  CAS  PubMed  Google Scholar 

  14. Maes T, Barcelo A, Buesa C (2002) Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics 80:21–30. https://doi.org/10.1006/geno.2002.6799

    Article  CAS  PubMed  Google Scholar 

  15. Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M (2008) The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol 68:1441–1453. https://doi.org/10.1002/dneu.20670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pandey A, Yadav V, Sharma A, Khurana JP, Pandey GK (2018) The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans. Cell Adh Migr 12:195–203. https://doi.org/10.1080/19336918.2017.1345413

    Article  CAS  PubMed  Google Scholar 

  17. Savagner P, Yamada KM, Thiery JP (1997) The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137:1403–1419. https://doi.org/10.1083/jcb.137.6.1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG (2009) The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 136:563–574. https://doi.org/10.1242/dev.016816

    Article  CAS  PubMed  Google Scholar 

  19. Shirley SH, Greene VR, Duncan LM, Torres Cabala CA, Grimm EA, Kusewitt DF (2012) Slug expression during melanoma progression. Am J Pathol 180:2479–2489. https://doi.org/10.1016/j.ajpath.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  Google Scholar 

  21. Srivastava K, Pickard A, Craig SG, Quinn GP, Lambe SM, James JA, McDade SS, McCance DJ (2018) DeltaNp63gamma/SRC/Slug signaling axis promotes epithelial-to-mesenchymal transition in squamous cancers. Clin Cancer Res 24:3917–3927. https://doi.org/10.1158/1078-0432.CCR-17-3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stringham E, Pujol N, Vandekerckhove J, Bogaert T (2002) unc-53 controls longitudinal migration in C. elegans. Development 129:3367–3379. http://dev.biologists.org/content/129/14/3367

  23. Stringham EG, Schmidt KL (2009) Navigating the cell: UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. Cell Adh Migr 3:342–346. https://doi.org/10.4161/cam.3.4.9451

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tan F, Zhu H, Tao Y, Yu N, Pei Q, Liu H, Zhou Y, Xu H, Song X, Li Y, Zhou Z, He X, Zhang X, Pei H (2015) Neuron navigator 2 overexpression indicates poor prognosis of colorectal cancer and promotes invasion through the SSH1L/cofilin-1 pathway. J Exp Clin Cancer Res 34:117. https://doi.org/10.1186/s13046-015-0237-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tront JS, Huang Y, Fornace AJ Jr, Hoffman B, Liebermann DA (2010) Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Res 70:9671–9681. https://doi.org/10.1158/0008-5472.CAN-10-2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang ZY, Hu M, Dai MH, Xiong J, Zhang S, Wu HJ, Zhang SS, Gong ZJ (2018) Upregulation of the long non-coding RNA AFAP1-AS1 affects the proliferation, invasion and survival of tongue squamous cell carcinoma via the Wnt/beta-catenin signaling pathway. Mol Cancer 17:3. https://doi.org/10.1186/s12943-017-0752-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Liu Y, He JC, Wang JM, Schemmer P, Ma CQ, Qian YW, Yao W, Zhang J, Qi WP, Fu Y, Feng W, Yang T (2016) 14-3-3zeta and aPKC-iota synergistically facilitate epithelial-mesenchymal transition of cholangiocarcinoma via GSK-3beta/Snail signaling pathway. Oncotarget 7:55191–55210. https://doi.org/10.18632/oncotarget.10483

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu J, Wang X, Lu Q, Wang J, Li L, Liao X, Zhu W, Lv L, Zhi X, Yu J, Jin Y, Zou Q, Ou Z, Liu X, Zhou P (2018) Extracellular 5′-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3beta/beta-catenin/cyclinD1 signaling pathway. Int J Cancer 142:959–967. https://doi.org/10.1002/ijc.31112

    Article  CAS  PubMed  Google Scholar 

  29. Zhao R, Li Y, Lin Z, Wan J, Xu C, Zeng Y, Zhu Y (2016) miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3beta/beta-catenin signaling pathway. Biochem Biophys Res Commun 477:749–754. https://doi.org/10.1016/j.bbrc.2016.06.130

    Article  CAS  PubMed  Google Scholar 

  30. Zou L, Chai J, Gao Y, Guan J, Liu Q, Du JJ (2016) Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3beta/Wnt/beta-catenin signaling. Biomed Pharmacother 84:139–146. https://doi.org/10.1016/j.biopha.2016.09.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all the colleagues who participated in this study.

Funding

This work was supported by the National Natural Science Foundation of China (No.81472000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuchun Cao or Dongxian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were approved by the Ethics Committee of Tongji hospital and in accordance with the declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 513 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Li, X., Cheng, R. et al. NAV2 facilitates invasion of cutaneous melanoma cells by targeting SNAI2 through the GSK-3β/β-catenin pathway. Arch Dermatol Res 311, 399–410 (2019). https://doi.org/10.1007/s00403-019-01909-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-01909-w

Keywords

Navigation