Skip to main content

Advertisement

Log in

Histochemical distribution of sialic acids and antimicrobial substances in porcine carpal glands

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The localization of sialic acids and antimicrobial products (lysozyme, IgA, lactoferrin, β-defensin 2) as well as Rab3D in the carpal glands of pig was studied by sialoglycoconjugate histochemistry and immunohistochemistry. The secretory epithelium of the carpal glands consisted of dark and clear cells. The dark cells of these glands exhibited high levels of sialoglycoconjugates, including O-acetylated sialic acids, whereas the localization of sialic acids linked to α2-3Gal1-4GlcNAc was confined to a subpopulation of the dark cells. Furthermore, all antimicrobial substances and Rab3D were mainly detectable in a subpopulation of the dark cells. The results obtained are discussed with regard to the functional significance of these glands. Our findings suggested that Rab3D is involved in the secretory regulation of sialoglycoconjugates and antimicrobial substances. These secretory products may create a defensive barrier against microbial invasion and play an essential role in the preservation of skin integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide antibiotics human β defensin-1 and human β defensin-2 in normal human skin. J Invest Dermatol 117:106–111

    Article  PubMed  CAS  Google Scholar 

  2. Bos JD, Pasch MC, Asghar SS (2001) Defensins and complement systems from the perspective of skin immunity and autoimmunity. Clin Dermatol 19:563–572

    Article  PubMed  CAS  Google Scholar 

  3. Calhoun ML, Stinson AW (1981) Integument. In: Dellman HD, Brown EM (eds) Textbook of veterinary histology, 2nd edn. Lea and Febiger, Philadelphia, pp 378–411

    Google Scholar 

  4. Casselman WGB (1959) Histochemical technique. Methuen, London

    Google Scholar 

  5. Corthésy B (2010) Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol 5:817–829

    Article  PubMed  Google Scholar 

  6. Danguy A (1995) Perspectives in modern glycohistochemistry. Eur J Histochem 39:5–14

    PubMed  CAS  Google Scholar 

  7. Ellis RA (1968) Eccrine sweat glands: electron microscopy, cytochemistry and anatomy. In: Jadassohn J (ed) Handbuch der Haut- und Geschlechtskrankheiten, Ergänzungswerk I/1. Springer, Berlin, pp 224–266

    Google Scholar 

  8. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  9. Ganz T (2004) Defensins: antimicrobial peptides of vertebrates. C R Biol 327:539–549

    Article  PubMed  CAS  Google Scholar 

  10. Gargiulo AM, Pedini V, Ceccarelli P (1989) Histology, ultrastructure and carbohydrate histochemistry of pig carpal glands. Anat Histol Embryol 18:289–296

    Article  PubMed  CAS  Google Scholar 

  11. Hashimoto K, Hori K, Aso M (1986) Sweat glands. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 2. Springer, Berlin, pp 339–373

    Google Scholar 

  12. Hraste A, Stojković R (1995) Histomorphologic and histochemical characteristics of carpal glands (Glanulae carpeae) in domestic swine (Sus scrofa domesticus) and wild swine (Sus scrofa ferus). Anat Histol Embryol 24:209–211

    Article  PubMed  CAS  Google Scholar 

  13. Jolles P, Jolles J (1984) What’s new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63:165–189

    Article  PubMed  CAS  Google Scholar 

  14. Kimber I, Cumberbatch M, Dearman RJ, Headon DR, Bhushan M, Griffiths CE (2002) Lactoferrin: influences on Langerhans cells, epidermal cytokines, and cutaneous inflammation. Biochem Cell Biol 80:103–107

    Article  PubMed  CAS  Google Scholar 

  15. Klenha J, Krs V (1967) Lysozyme is mouse and human skin. J Invest Dermatol 49:396–399

    PubMed  CAS  Google Scholar 

  16. Kurosumi K, Shibasaki S, Ito T (1984) Cytology of the secretion in mammalian sweat glands. Int Rev Cytol 87:253–329

    Article  PubMed  CAS  Google Scholar 

  17. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80:252–267

    PubMed  CAS  Google Scholar 

  18. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  PubMed  CAS  Google Scholar 

  19. Metze D, Jurecka W, Gebhart W, Schmidt J, Mainitz M, Niebauer G (1989) Immunohistochemical demonstration of immunoglobulin A in human sebaceous and sweat glands. J Invest Dermatol 91:13–17

    Article  Google Scholar 

  20. Meyer W, Bartels T (1989) Histochemical study on the eccrine glands in the foot pad of the cat. Basic Appl Histochem 33:219–238

    PubMed  CAS  Google Scholar 

  21. Meyer W, Tsukise A (1989) Histochemistry of glycoconjugates in the skin of the bovine muzzle, with special reference to glandular structures. Acta Anat 136:226–234

    Article  PubMed  CAS  Google Scholar 

  22. Meyer W, Tsukise A (1995) Lectin histochemistry of snout skin and foot pads in the wolf and the domesticated dog (Mammalia: Canidae). Ann Anat 177:39–49

    Article  PubMed  CAS  Google Scholar 

  23. Millar AL, Pavlos NJ, Zheng MH (2002) Rab3D: a regulator of exocytosis in non-neuronal cells. Histol Histopathol 17:929–936

    PubMed  CAS  Google Scholar 

  24. Mowry RW (1963) The special value methods that colour with acidic and vicinal hydroxyl groups in the histochemical study of mucus. With revised directions for the colloidal iron stain, the use of alcian blue 8 GX and their combination with the periodic acid-Schiff reaction. Ann NY Acad Sci 106:402–423

    Article  CAS  Google Scholar 

  25. Newman GR, Jasani B, Williams ED (1983) A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem J 15:543–555

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa H, Miyazaki H, Kimura M (1971) Isolation and characterization of human skin lysozyme. J Invest Dermatol 57:111–116

    Article  PubMed  CAS  Google Scholar 

  27. Parillo F, Arias MP, Supplizi AV (2009) Glycoprofile of the different cell types present in the mucosa of the horse guttural pouches. Tissue Cell 41:257–265

    Article  PubMed  CAS  Google Scholar 

  28. Papini M, Simonetti S, Franceschini S, Scaringi L, Binazzi M (1982) Lysozyme distribution in healthy human skin. Arch Dermatol Res 272:167–170

    Article  PubMed  CAS  Google Scholar 

  29. Pedini V, Scocco P, Dall’Aglio C, Gargiulo AM (1999) Detection of glycosidic residues in carpal glands of wild and domestic pig revealed by basic and lectin histochemistry. Ann Anat 181:269–274

    Article  PubMed  CAS  Google Scholar 

  30. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  31. Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology 107:49–64

    Article  PubMed  CAS  Google Scholar 

  32. Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19:507–514

    Article  PubMed  CAS  Google Scholar 

  33. Schröder JM (1999) Epithelial peptide antibiotics. Biochem Pharmacol 57:121–134

    Article  PubMed  Google Scholar 

  34. Snoeck V, Peters I, Cox E (2006) The IgA system: a comparison of structure and function in different species. Vet Res 37:455–467

    Article  PubMed  CAS  Google Scholar 

  35. Spicer SS (1960) A correlative study of the histochemical properties of rodent acid mucopolysaccharides. J Histochem Cytochem 8:18–35

    Article  PubMed  CAS  Google Scholar 

  36. Spicer SS, Horn RG, Leppi TJ (1967) Histochemistry of connective tissue mucopolysaccharides. In: Wagner BM, Smith DE (eds) The connective tissue. Williams and Wilkens, Baltimore, pp 251–303

    Google Scholar 

  37. Stumpf P, Welsch U (2002) Cutaneous eccrine glands of the foot pads of the Rock hyrax (Procavia capensis, Hyracoidea, Mammalia). Cells Tissues Organs 171:215–226

    Article  PubMed  CAS  Google Scholar 

  38. Stumpf P, Künzle H, Welsch U (2004) Cutaneous eccrine glands of the foot pads of the small Madagascan tenrec (Echinops telfairi, Insectivora, Tenrecidae): skin glands in a primitive mammal. Cell Tissue Res 315:59–70

    Article  PubMed  Google Scholar 

  39. Suzuki Y (2005) Sialobiology of influenza molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408

    Article  PubMed  CAS  Google Scholar 

  40. Tang QJ, Tao KZ, Yun-Liu, Sun XJ, Geng MY, Jiang CL (2005) Immunocytochemical localization of secretory component in Paneth cell secretory granules-rat Paneth cells participate in acquired immunity. J Mol Histol 36:331–335

    Article  PubMed  Google Scholar 

  41. Tsukise A, Meyer W, Schwarz R (1983) Histochemistry of complex carbohydrates in the skin of the pig snout, with special reference to eccrine glands. Acta Anat 115:141–150

    Article  PubMed  CAS  Google Scholar 

  42. Tsukise A, Fujimori O, Yamada K (1988) Histochemistry of glycoconjugates in the goat nasolabial skin with special reference to eccrine glands. Acta Anat 132:150–158

    Article  PubMed  CAS  Google Scholar 

  43. Tsukise A, Meyer W, Fujimori O, Yamada K (1988) The cytochemistry of glycoconjugates in the planum nasolabial glands of the goat as studied by electron microscopic methods. Histochem J 20:617–623

    Article  PubMed  CAS  Google Scholar 

  44. Ueda T, Fujimori O, Yamada K (1995) A new histochemical method for detection of sialic acids using a physical development procedure. J Histochem Cytochem 43:1045–1051

    Article  PubMed  CAS  Google Scholar 

  45. Ueda T, Fujimori O, Tsukise A, Yamada K (1998) Histochemical analysis of sialic acids in the epididymis of the rat. Histochem Cell Biol 109:399–407

    Article  PubMed  CAS  Google Scholar 

  46. Valenti P, Marchetti M, Superti F, Amendolia MG, Puddu P, Gessani S, Borghi P, Belardelli F, Antonini G, Seganti L (1998) Antiviral activity of lactoferrin. Adv Exp Med Biol 443:199–203

    PubMed  CAS  Google Scholar 

  47. Valentijin JA, van Weeren L, Ultee A, Koster J (2007) Novel localization of Rab3D in rat intestinal goblet cells and Brunner’s gland acinar cells suggests a role in early Golgi trafficking. Am J Physiol Gastrointest Liver Physiol 293:G165–G177

    Article  Google Scholar 

  48. Varki A, Schauer R (2009) Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 199–218

    Google Scholar 

  49. Ward PP, Uribe-Luna S, Conneely OM (2002) Lactoferrin and host defense. Biochem Cell Biol 80:95–102

    Article  PubMed  CAS  Google Scholar 

  50. Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  PubMed  CAS  Google Scholar 

  51. Williams JA, Chen X, Sabbatini ME (2009) Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 296:E405–E414

    Article  PubMed  CAS  Google Scholar 

  52. Yamada K (1993) Histochemistry of carbohydrates as performed by physical development procedures. Histochem J 25:95–106

    Article  PubMed  CAS  Google Scholar 

  53. Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defense and adaptive immunity. Cell Mol Life Sci 58:978–989

    Article  PubMed  CAS  Google Scholar 

  54. Yasui T, Tsukise A, Meyer W (2004) Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur J Histochem 48:393–402

    PubMed  CAS  Google Scholar 

  55. Yasui T, Tsukise A, Meyer W (2005) Morphology and glycoconjugate histochemistry of the eccrine glands in the snout skin of the North American raccoon (Procyon lotor). Arch Dermatol Res 296:482–488

    Article  PubMed  CAS  Google Scholar 

  56. Yasui T, Nara T, Habata I, Meyer W, Tsukise A (2010) Functional properties of feline foot pads as studied by lectin histochemical and immunohistochemical methods. Acta Histochem 112:169–177

    Article  PubMed  CAS  Google Scholar 

  57. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azuma Tsukise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukui, K., Yasui, T., Gomi, H. et al. Histochemical distribution of sialic acids and antimicrobial substances in porcine carpal glands. Arch Dermatol Res 304, 599–607 (2012). https://doi.org/10.1007/s00403-012-1226-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1226-4

Keywords

Navigation