Skip to main content

Advertisement

Log in

Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-β by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The extracellular matrix (ECM) that gives tissue its structural integrity is remodeled in skin aging/photoaging and cancer via the increased expression/activities of matrixmetalloproteinases (MMP), inhibition of the tissue inhibitors of matrix metalloproteinases (TIMP), or inhibition of collagen synthesis. Transforming growth factor-β (TGF-β), a predominant regulator of the ECM, is inhibited in aging/photoaging and stimulated in carcinogenesis. P. leucotomos (fern) extract has potential to counteract these alterations via its antioxidant, anti-inflammatory and photoprotective properties. The goal of this research was to determine the efficacy of P. leucotomos to (a) directly inhibit MMP-1, 2, 3, and 9 activities, (b) inhibit MMP-2, and stimulate TIMPs, fibrillar collagens and TGF-β in non-irradiated or ultraviolet (UV) radiated fibroblasts, and (c) inhibit MMPs and TGF-β, and stimulate TIMPs in melanoma cells. To this purpose, we examined the direct effect of P. leucotomos (0–1%) on MMPs’ activities, and its effects on the expression (protein and/or transcription levels) of (1) MMPs and TIMPs in dermal fibroblasts, and melanoma cells, (2) TGF-β in non-irradiated, UVA (2.5 J/cm2) or UVB (2.5 mJ/cm2) irradiated fibroblasts, and melanoma cells, and (3) types I, III, and V collagen in non-irradiated or UV irradiated fibroblasts. P. leucotomos directly inhibited the activities of MMPs as well as the expression of MMPs in fibroblasts, and melanoma cells while stimulating the expression of TIMPs in these cells. P. leucotomos stimulated types I, III, and V collagen in non-irradiated fibroblasts, and types I and V collagen in UV radiated fibroblasts. P. leucotomos had predominant stimulatory effects on TGF-β expression in non-irradiated or UV radiated fibroblasts, and inhibited TGF-β expression in melanoma cells. The effects of P. leucotomos were largely similar to that of ascorbic acid. P. leucotomos demonstrated dual protective effects on the ECM via its inhibition of the ECM proteolytic enzymes and the stimulation of the structural ECM collagens. The effects of P. leucotomos on fibroblasts and melanoma cells may be partly via its cell-specific regulation of TGF-β expression and partly via its antioxidant property. The intake or topical application of P. leucotomos may be beneficial to skin health, in aging and cancer prevention or treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alcaraz MV, Pathak MA, Rius F, Kollias N, Gonzalez S (1999) An extract of Polypodium leucotomos appears to minimize certain photoaging changes in a hairless albino mouse animal model. Photodermatol Photoimmunol Photomed 15:120–126. doi:10.1111/j.1600-0781.1999.tb00071.x

    Article  PubMed  CAS  Google Scholar 

  2. Alonso-Lebrero JL, Dominguez-Jimenez C, Tejedor R, Brieva A, Pivel JP (2003) Photoprotective properties of a hydrophilic extract of the fern Polypodium leucotomos on human skin cells. J Photochem Photobiol 70:31–37. doi:10.1016/S1011-1344(03)00051-4

    Article  CAS  Google Scholar 

  3. Ashcroft G, Dodsworth J, VanBoxtel E, Tarnuzzer R, Horan M, Schultz G, Ferguson M (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nat Med 3:1209–1215. doi:10.1038/nm1197-1209

    Article  PubMed  CAS  Google Scholar 

  4. Astner S, Wu A, Chen J, Philips N, Rius-Diaz F, Parrado C, Mihm MC, Goukassian DA, Pathak MA, González S (2007) Dietary lutein/zeaxanthin reduces photoaging and photocarcinogenesis in chronically UVB irradiated SKH-1 hairless mice. Skin Pharmacol Physiol 20:281–283. doi:10.1159/000107576

    Article  CAS  Google Scholar 

  5. Bennett DC (2008) Ultraviolet wavebands and melanoma initiation. Pigment Cell Melanoma Res 21(5):520–524. doi:10.1111/j.1755-148X.2008.00500.x

    Article  PubMed  CAS  Google Scholar 

  6. Bernd A, Ramirez-Bosca A, Huber H, Diaz-Alperi J, Thaci D, Sewell A, Auintanilla-Almagro E, Holzmann H (1995) In vitro studies on the immunomodulating effects of Polypodium leucotomos extract on human leukocyte fractions. Arzneimittelforschung 45:901–904

    PubMed  CAS  Google Scholar 

  7. Berton A, Godeau G, Emonard H, Baba K, Bellon P, Hornebeck W, Bellon G (2000) Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biol 19:139–148. doi:10.1016/S0945-053X(00)00057-3

    Article  PubMed  CAS  Google Scholar 

  8. Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang S, Fisher GJ, Varani J, Voorhees JJ (2003) Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol 78:43–48. doi:10.1562/0031-8655(2003)078<0043:MMITMC>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  9. Brenner M, Degitz K, Besch R, Berking C (2005) Differential expression of melanoma-associated growth factors in keratinocytes and fibroblasts by ultraviolet A and ultraviolet B radiation. Br J Dermatol 153(4):733–739. doi:10.1111/j.1365-2133.2005.06780.x

    Article  PubMed  CAS  Google Scholar 

  10. Capote R, Alonso-Lebrero JL, Garcia F, Brieva A, Pivel JP, Gonzalez S (2006) Polypodium leucotomos extract inhibits trans-urocanic acid isomerization and photodecomposition. J Photochem Photobiol B 82:173–179. doi:10.1016/j.jphotobiol.2005.11.005

    Article  PubMed  CAS  Google Scholar 

  11. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowaska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J Invest Dermatol 112:49–57. doi:10.1046/j.1523-1747.1999.00477.x

    Article  PubMed  CAS  Google Scholar 

  12. Doyle GA, Pierce RA, Parks WC (1997) Transcriptional induction of collagenase-1 in differentiated monocyte-like (U937) cells is regulated by AP-1 and an upstream C/EBP-β site. J Biol Chem 272:11840–11849. doi:10.1074/jbc.272.18.11840

    Article  PubMed  CAS  Google Scholar 

  13. Edwards DR, Leco KJ, Beaudry PP, Atadja PW, Veillette C, Riabowol KT (1996) Differential effects of transforming growth factor-beta 1 on the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in young and old human fibroblasts. Exp Gerontol 31:207–223. doi:10.1016/0531-5565(95)02010-1

    Article  PubMed  CAS  Google Scholar 

  14. Gambichler T, Skrygan M, Tomi NS, Breuksch S, Altmeyer P, Kreuter A (2007) Significant downregulation of transforming growth factor-beta signal transducers in human skin following ultraviolet-A1 irradiation. J Br Dermatol 156:951–956. doi:10.1111/j.1365-2133.2007.07802.x

    Article  CAS  Google Scholar 

  15. Gambichler T, Skrygan M, Tomi NS, Breuksch S, Altmeyer P, Kreuter A (2007) Significant downregulation of transforming growth factor-beta signal transducers in human skin following ultraviolet-A1 irradiation. Br J Dermatol 156:951–956. doi:10.1111/j.1365-2133.2007.07802.x

    Article  PubMed  CAS  Google Scholar 

  16. Gebhardt C, Averbeck M, Veirtel A, Kauer F, Saalbach A, Anderegg U, Simon JC (2007) Ultraviolet-B irradiation enhances melanoma cell motility via induction of autocrine interleukin 8 secretion. Exp Dermatol 16(8):636–643. doi:10.1111/j.1600-0625.2007.00572.x

    Article  PubMed  CAS  Google Scholar 

  17. Ghahary A, Tredget EE, Shen Q (1999) Insulin-like growth factor-II/mannose 6 phosphate receptors facilitate the matrix effects of latent transforming growth factor-beta1 released from genetically modified keratinocytes in a fibroblast/keratinocyte co-culture system. J Cell Physiol 180:61–70. doi:10.1002/(SICI)1097-4652(199907)180:1<61::AID-JCP7>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  18. Gombau L, Garcia F, Lahoz A, Fabre M, Roda-Navarro P, Majano P, Alonso-Lebrero JL, Pivel JP, Castell JV, Gomez-Lechon MJ, Gonzalez S (2006) Polypodium leucotomos extract: antioxidant activity and disposition. Toxicol In Vitro 20:464–471. doi:10.1016/j.tiv.2005.09.008

    Article  PubMed  CAS  Google Scholar 

  19. Gomes AJ, Lunardi CN, Gonzalez S, Tedesco AC (2001) The antioxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species. Braz J Med Biol Res 34:1487–1494

    PubMed  CAS  Google Scholar 

  20. Gonzalez S, Alcaraz MV, Cuevas J, Perez M, Jaen P, Alvarex-Mon M, Villarrubia V (2000) An extract of the fern Polypodium leucotomos (Difur®) modulates Th1/Th2 cytokines balance in vitro and appears to exhibit anti-angiogenic activities in vivo: pathogenic relationships and therapeutic implications. Anticancer Res 20:1567–1576

    PubMed  CAS  Google Scholar 

  21. Gonzalez S, Alonso-Lebrero JL, Del Rio R, Jaen P (2007) Polypodium leucotomos extract: a nutraceutical with photoprotective properties. Drugs Today (Barc) 43:475–485. doi:10.1358/dot.2007.43.7.1062667

    Article  Google Scholar 

  22. González S, Pathak MA (1996) Inhibition of ultraviolet-induced formation of reactive oxygen species, lipid peroxidation, erythema and skin photosensitization by Polypodium leucotomos. Photodermatol Photoimmunol Photomed 12:45–56

    PubMed  Google Scholar 

  23. Gonzalez S, Pathak MA, Cuevas J, Villarrubia VG, Fitzpatrick TB (1997) Topical or oral administration with an extract of Polypodium leucotomos prevents acute sunburn and psoralen-induced phototoxic reactions as well as depletion of Langerhans cells in human skin. Photodermatol Photoimmunol Photomed 13:50–60

    PubMed  CAS  Google Scholar 

  24. Horvath A, Alvarado F, Szocs J, Alvarado ZN, Padilla G (1967) Metablic effects of calagualine, an antitumoral saponine of Polypodium leucotomos. Nature 214:1256–1258. doi:10.1038/2141256a0

    Article  PubMed  CAS  Google Scholar 

  25. Huncharek M, Kupelnick B (2002) Use of topical sunscreens and the risk of malignant melanoma: a meta-analysis of 9067 patients from 11 case–control studies. Am J Public Health 92(7):1173–1177. doi:10.2105/AJPH.92.7.1173

    Article  PubMed  Google Scholar 

  26. Jańczyk A, Garcia-Lopez MA, Fernandez-Peñas P, Alonso-Lebrero JL, Benedicto I, López-Cabrera M, Gonzalez S (2007) A Polypodium leucotomos extract inhibits solar-simulated radiation-induced TNF-alpha and iNOS expression, transcriptional activation and apoptosis. Exp Dermatol 16:823–829. doi:10.1111/j.1600-0625.2007.00603.x

    Article  PubMed  Google Scholar 

  27. Jung E, Lee J, Baek J, Jung K, Lee J, Huh S, Kim S, Koh J, Park D (2007) Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J Ethnopharmacol 112:127–131. doi:10.1016/j.jep.2007.02.012

    Article  PubMed  CAS  Google Scholar 

  28. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 329–337

  29. Khorramizadeh MR, Tredget EE, Telaskyr C, Shen Q, Ghahary A (1999) Aging differentially modulates the expression of collagen and collagenase in dermal fibroblasts. Mol Cell Biochem 194:99–108. doi:10.1023/A:1006909021352

    Article  PubMed  CAS  Google Scholar 

  30. Kim HH, Cho S, Lee S, Kim KH, Cho KH, Eun HC, Chung JH (2006) Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J Lipid Res 47:921–930. doi:10.1194/jlr.M500420-JLR200

    Article  PubMed  CAS  Google Scholar 

  31. Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski Oja J (2001) Latency, activation, and binding proteins of TGF.beta. Microsc Res Tech 52:354–362

    Article  PubMed  CAS  Google Scholar 

  32. Lee C, Choi H, Kim H, Kim D, Chang I, Moon HT, Lee S, Oh WK, Woo E (2008) Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. Bioorg Med Chem 16:732–738. doi:10.1016/j.bmc.2007.10.036

    Article  PubMed  CAS  Google Scholar 

  33. Mauviel A, Chung K, Agarwal A, Tamai K, Uitto J (1996) Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-β in fibroblasts and keratinocytes. J Biol Chem 271:10917–10923. doi:10.1074/jbc.271.18.10917

    Article  PubMed  CAS  Google Scholar 

  34. Middelkamp-Hup MA, Pathak MA, Parrado C, Goukassian D, Rius-Díaz F, Mihm MC, Fitzpatrick TB, González S (2004) Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J Am Acad Dermatol 51:910–918. doi:10.1016/j.jaad.2004.06.027

    Article  PubMed  Google Scholar 

  35. Middelkamp-Hup MA, Pathak MA, Parrado C, Garcia-Caballero T, Rius-Diaz F, Fitzpatrick TB, Gonzales S (2004) Orally administered Polyodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin. J Am Acad Dermatol 50:41–49. doi:10.1016/S0190-9622(03)02732-4

    Article  PubMed  Google Scholar 

  36. Millis AJ, Hoyle M, McCue HM, Martini H (1992) Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp Cell Res Aug 201:373–379

    Article  CAS  Google Scholar 

  37. Molho-Pessach V, Lotem M (2007) Ultraviolet radiation and cutaneous carcinogenesis. Curr Probl Dermatol 35:14–27. doi:10.1159/000106407

    Article  PubMed  CAS  Google Scholar 

  38. Mori Y, Hatamochi A, Arakawa M, Ueki H (1998) Reduced expression of mRNA for transforming growth factor beta (TGF beta) and TGF beta R receptors I and II and decreased TGF beta binding to the receptors in vitro-aged fibroblasts. Arch Dermatol Res 290:158–162. doi:10.1007/s004030050282

    Article  PubMed  CAS  Google Scholar 

  39. Philips N (2003) An anti TGF-β increased the expression of transforming growth factor-β, matrix metallproteinase-1, and elastin, and its effects were antagonized by ultraviolet radiation in epidermal keratinocytes. J Dermatol Sci 33:177–179. doi:10.1016/j.jdermsci.2003.08.006

    Article  PubMed  CAS  Google Scholar 

  40. Philips N, Smith J, Keller T, Gonzalez S (2003) Predominant effects of Polypodium leucotomos on membrane integrity, lipid peroxidation, and expression of elastin and matrixmetalloproteinase-1 in ultraviolet radiation exposed fibroblasts, and keratinocytes. J Dermatol Sci 32:1–9. doi:10.1016/S0923-1811(03)00042-2

    Article  PubMed  CAS  Google Scholar 

  41. Philips N, Burchill D, O’Donoghue D, Keller T, Gonzalez S (2004) Identification of benzene metabolites in dermal fibroblasts: regulation of cell viability, apoptosis, lipid peroxidation, and expression of MMP-1 and elastin by benzene metabolites. Skin Pharmacol Physiol 17:147–152. doi:10.1159/000077242

    Article  PubMed  CAS  Google Scholar 

  42. Philips N, Keller T, Gonzalez S (2004) TGF-β like regulation of matrix metalloproteinases by anti transforming growth factor-β? and anti transforming growth factor-β1 antibodies in dermal fibroblasts: implications to wound healing. Wound Repair Regen 12:53–59

    Article  PubMed  Google Scholar 

  43. Philips N, McFadden K (2004) Inhibition of transforming growth factor-beta and matrix metalloproteinases by estrogen, and prolactin in breast cancer cells. Cancer Lett 206:63–68. doi:10.1016/j.canlet.2003.10.019

    Article  PubMed  CAS  Google Scholar 

  44. Philips N, Keller T, Hendrix C, Hamilton S, Arena R, Tuason M, Gonzalez S (2007) Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts. Arch Dermatol Res 299:373–379. doi:10.1007/s00403-007-0779-0

    Article  PubMed  CAS  Google Scholar 

  45. Philips N, Keller T, Holmes C (2007) Reciprocal effects of ascorbate on cancer cell growth and the expression of matrix metalloproteinases and transforming growth factor-beta. Cancer Lett 256:49–55. doi:10.1016/j.canlet.2007.05.009

    Article  PubMed  CAS  Google Scholar 

  46. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ (2002) Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol 119:499–506. doi:10.1046/j.1523-1747.2002.01834.x

    Article  PubMed  CAS  Google Scholar 

  47. Quan T, He T, Voorhes JJ, Fisher GJ (2001) Ultraviolet irradiation blocks cellular responses to transforming growth factor-β by down-regulating its type-II receptor and inducing Smad7. J Biol Chem 276(28):26349–26356. doi:10.1074/jbc.M010835200

    Article  PubMed  CAS  Google Scholar 

  48. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ (2004) Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. Am J Pathol 165(3):741–751

    PubMed  CAS  Google Scholar 

  49. Rayward J, Villarrubia VG, Guillen C, Prieto A, Rodriguez-Zapata M, Sada G, Alvarez-Mon M. An extract of the fern Polypodium leucotomos inhibits human peripheral blood mononuclear cells proliferation in vitro. Int J Immunopharmacol 19:9–14. doi:10.1016/S0192-0561(97)00002-7

  50. Ricciarelli R, Maroni P, Ozer N, Zingg JM, Azzi A (1999) Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase C inhibition. Free Radic Biol Med 27:729–737. doi:10.1016/S0891-5849(99)00007-6

    Article  PubMed  CAS  Google Scholar 

  51. Rijken F, Kiekens RC, Bruijnzeek PL (2005) Skin-infiltrating neutrophils following exposure to solar-simulated radiation could play an important role in photoageing of human skin. Br J Dermatol 152:321–328. doi:10.1111/j.1365-2133.2004.06335.x

    Article  PubMed  CAS  Google Scholar 

  52. Rijken F, Kiekens RC, van den Worm E, Lee PL, van Weelden H, Bruijnzeek PL (2006) Pathophysiology of photoaging of human skin: focus on neutrophils. Photochem Photobiol Sci 5:184–189. doi:10.1039/b502522b

    Article  PubMed  CAS  Google Scholar 

  53. Shin MH, Rhie GE, Park CH, Kim KH, Cho KH, Eun HC, Chung JH (2005) Modulation of collagen metabolism by the topical application of dehydroepiandrosterone to human skin. J Invest Dermatol 124:315–323. doi:10.1111/j.0022-202X.2004.23588.x

    Article  PubMed  CAS  Google Scholar 

  54. Sporn MB, Roberts AB, Wakefield LM, Assoian RK (1986) Transforming growth factor. beta: biological function and chemical structure. Science 233:532–534

    Article  PubMed  CAS  Google Scholar 

  55. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ (2004) Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. Am J Pathol 165:741–751

    PubMed  CAS  Google Scholar 

  56. Talvensaari-Mattila A, Paakko P, Hoyhtya M, Blance-Sequeiros G, Turpeenniemi-Hujanen T (1998) Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 83:1153–1162. doi:10.1002/(SICI)1097-0142(19980915)83:6<1153::AID-CNCR14>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  57. Ullrich SE (2007) Sunlight and skin cancer: lessons from the immune system. Mol Carcinog 46(8):629–633. doi:10.1002/mc.20328

    Article  PubMed  CAS  Google Scholar 

  58. Varani J, Warner RL, Gharaee-Kermani M (2000) Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 114:480–486. doi:10.1046/j.1523-1747.2000.00902.x

    Article  PubMed  CAS  Google Scholar 

  59. Wang H, Kochevar IE (2005) Involvement of UVB-induced reactive oxygen species in GF-beta biosynthesis and activation in keratinocytes. Free Radic Biol Med 38(7):890–897. doi:10.1016/j.freeradbiomed.2004.12.005

    Article  PubMed  CAS  Google Scholar 

  60. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  61. Wu J, Chen D, Wu Z (2000) Quantitive study on the expression of mRNA for TGF-beta and collagenase (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in hypertrophic scar. Zhonghua Zheng Xing Wai Ke Za Zhi 16:34–36

    PubMed  CAS  Google Scholar 

  62. Zeng G, McCue HM, Mastrangelo L, Millis AJ (1996) Endogenous TGF-beta activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res 228:271–276. doi:10.1006/excr.1996.0326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by Industrial Cantabria Farmaceutica, SA, Madrid, Spain; and the Departments of Biology and Chemistry/Biochemistry of Georgian Court University, Lakewood, NJ. The Tissue Culture course students at Georgian Court University (NJ) contributed greatly to the research. Hiran Gadhiya and Isabel Zerpa students of Fairleigh Dickinson University (NJ), and Linda Zhau of Bergan County Academies (NJ) provided technical assistance. In addition, the research formed the independent study or honor’s thesis projects of students at Fairleigh Dickinson University (NJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Philips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philips, N., Conte, J., Chen, YJ. et al. Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-β by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells. Arch Dermatol Res 301, 487–495 (2009). https://doi.org/10.1007/s00403-009-0950-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0950-x

Keywords

Navigation