Skip to main content
Log in

Double screw versus angular stable plate fixation of scaphoid waist nonunions in combination with intraoperative extracorporeal shockwave therapy (ESWT)

  • Handsurgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Over the past years, different fixation techniques focused on rotational stability in order to increase stability and stimulate union rates. Additionally, extracorporeal shockwave therapy (ESWT) has gained importance in the treatment of delayed and nonunions. Purpose of this study was to compare the radiological and clinical outcome of two headless compression screws (HCS) and plate fixation in scaphoid nonunions, in combination with intraoperative high energy ESWT.

Materials and methods

Thirty-eight patients with scaphoid nonunions were treated by using a nonvascularized bone graft from the iliac crest and stabilization with either two HCS or a volar angular stable scaphoid plate. All patients received one ESWT session with 3000 impulses and energy flux per pulse of 0.41 mJ/mm2 intraoperatively. Clinical assessment included range of motion (ROM), pain according to the Visual Analog Scale (VAS), grip strength, disability of the Arm Shoulder and Hand Score, Patient-Rated Wrist Evaluation Score, Michigan Hand Outcomes Questionnaire and modified Green O’Brien (Mayo) Wrist Score. To confirm union, a CT scan of the wrist was performed.

Results

Thirty-two patients returned for clinical and radiological examination. Out of these, 29 (91%) showed bony union. All patients treated with two HCS compared to 16 out of 19 (84%) patients treated by plate showed bony union on the CT scans. The difference was not statistically significant. However, at a mean follow-up interval of 34 months, no significant differences could be found in ROM, pain, grip strength and patient-reported outcome measurements between the two HCS and plate group. Height-to-length ratio and capitolunate angle improved significantly in both groups compared to preoperative.

Conclusions

Scaphoid nonunion stabilization by using two HCS or angular stable volar plate fixation and intraoperative ESWT results in comparable high union rates and good functional outcome. Due to the higher rate for a secondary intervention (plate removal), HCS might be preferable as first choice, whereas the scaphoid plate fixation should be reserved for recalcitrant (substantial bone loss, humpback deformity or failed prior surgical intervention) scaphoid nonunions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Duckworth AD, Jenkins PJ, Aitken SA et al (2012) Scaphoid fracture epidemiology. J Trauma Acute Care Surg 72:1. https://doi.org/10.1097/TA.0b013e31822458e8

    Article  Google Scholar 

  2. Hove LM (1999) Epidemiology of scaphoid fractures in Bergen, Norway. Scand J Plast Reconstr Surg Hand Surg 33:423–426. https://doi.org/10.1080/02844319950159145

    Article  CAS  PubMed  Google Scholar 

  3. Mallee WH, Mellema JJ, Guitton TG et al (2016) 6-week radiographs unsuitable for diagnosis of suspected scaphoid fractures. Arch Orthop Trauma Surg 136:771–778. https://doi.org/10.1007/s00402-016-2438-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rein S, Hanisch U, Rammelt S et al (2010) Histopathological, radiological and clinical aspects of the temporal assignment of scaphoid non-union. Arch Orthop Trauma Surg 130:1243–1250. https://doi.org/10.1007/s00402-009-1010-x

    Article  PubMed  Google Scholar 

  5. Kahl T, Razny FK, Benter JP et al (2016) Diagnosis of the scaphoid bone: fractures, nonunion, circulation, perfusion. Orthopade 45:938–944. https://doi.org/10.1007/s00132-016-3333-y

    Article  CAS  PubMed  Google Scholar 

  6. Schädel-Höpfner M, Bickert B, Dumont C et al (2016) Acute scaphoid fractures: management under consideration of the new S3-level guideline. Orthopade 45:945–950. https://doi.org/10.1007/s00132-016-3336-8

    Article  PubMed  Google Scholar 

  7. Inoue G, Sakuma M (1996) The natural history of scaphoid non-union. Arch Orthop Trauma Surg 115:1–4. https://doi.org/10.1007/BF00453208

    Article  CAS  PubMed  Google Scholar 

  8. Pinder RM, Brkljac M, Rix L et al (2015) Treatment of scaphoid nonunion: a systematic review of the existing evidence. J Hand Surg Am 40:1797–1805. https://doi.org/10.1016/j.jhsa.2015.05.003

    Article  PubMed  Google Scholar 

  9. Nakamura R, Imaeda T, Miura T (1991) Scaphoid malunion. J Bone Jt Surg Ser B 73:134–137. https://doi.org/10.1302/0301-620x.73b1.1991749

    Article  CAS  Google Scholar 

  10. Quadlbauer S, Pezzei C, Jurkowitsch J et al (2019) Palmar angular stable plate fixation of nonunions and comminuted fractures of the scaphoid. Oper Orthop Traumatol 31:433–446. https://doi.org/10.1007/s00064-019-00623-0

    Article  CAS  PubMed  Google Scholar 

  11. Gelberman RH, Menon J (1980) The vascularity of the scaphoid bone. J Hand Surg Am 5:508–513

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi M, Garcia-Elias M, Nagy L et al (1997) Axial loading induces rotation of the proximal carpal row bones around unique screw-displacement axes. J Biomech 30:1165–1167. https://doi.org/10.1016/S0021-9290(97)00080-8

    Article  CAS  PubMed  Google Scholar 

  13. Smith DK, Cooney WP, An KN et al (1989) The effects of simulated unstable scaphoid fractures on carpal motion. J Hand Surg Am 14:283–291. https://doi.org/10.1016/0363-5023(89)90022-1

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Elias M (1997) Kinetic analysis of carpal stability during grip. Hand Clin 13:151–158

    Article  CAS  PubMed  Google Scholar 

  15. Buijze GA, Ochtman L, Ring D (2012) Management of scaphoid nonunion. J Hand Surg Am 37:1095–1100. https://doi.org/10.1016/j.jhsa.2012.03.002

    Article  PubMed  Google Scholar 

  16. Pao VS, Chang J (2003) Scaphoid nonunion: diagnosis and treatment. Plast Reconstr Surg 112:1666–1669

    Article  PubMed  Google Scholar 

  17. Leixnering M, Pezzei C, Weninger P et al (2011) First experiences with a new adjustable plate for osteosynthesis of scaphoid nonunions. J Trauma Inj Infect Crit Care 71:933–938. https://doi.org/10.1097/TA.0b013e3181f65721

    Article  CAS  Google Scholar 

  18. Eng K, Gill S, Hoy S et al (2020) Volar scaphoid plating for nonunion: a multicenter case series study. J Wrist Surg 09:225–229. https://doi.org/10.1055/s-0040-1702199

    Article  Google Scholar 

  19. Moojen TM, Snel JG, Ritt MJPF et al (2002) Scaphoid kinematics in vivo. J Hand Surg Am 27:1003–1010. https://doi.org/10.1053/jhsu.2002.36519

    Article  PubMed  Google Scholar 

  20. Wolfe SW, Neu C, Crisco JJ (2000) In vivo scaphoid, lunate, and capitate kinematics in flexion and in extension. J Hand Surg Am 25:860–869. https://doi.org/10.1053/jhsu.2000.9423

    Article  CAS  PubMed  Google Scholar 

  21. Garcia RM, Leversedge FJ, Aldridge JM et al (2014) Scaphoid nonunions treated with 2 headless compression screws and bone grafting. J Hand Surg Am 39:1301–1307. https://doi.org/10.1016/j.jhsa.2014.02.030

    Article  PubMed  Google Scholar 

  22. Mandaleson A, Tham SK, Lewis C et al (2017) Scaphoid fracture fixation in a nonunion model: a biomechanical study comparing 3 types of fixation. J Hand Surg Am. https://doi.org/10.1016/j.jhsa.2017.10.005

    Article  PubMed  Google Scholar 

  23. Jurkowitsch J, Dall’Ara E, Quadlbauer S et al (2016) Rotational stability in screw-fixed scaphoid fractures compared to plate-fixed scaphoid fractures. Arch Orthop Trauma Surg 136:1623–1628. https://doi.org/10.1007/s00402-016-2556-z

    Article  PubMed  Google Scholar 

  24. Quadlbauer S, Pezzei C, Beer T et al (2019) Treatment of scaphoid waist nonunion by one, two headless compression screws or plate with or without additional extracorporeal shockwave therapy. Arch Orthop Trauma Surg 139:281–293. https://doi.org/10.1007/s00402-018-3087-6

    Article  CAS  PubMed  Google Scholar 

  25. Quadlbauer S, Beer T, Pezzei C et al (2017) Stabilization of scaphoid type B2 fractures with one or two headless compression screws. Arch Orthop Trauma Surg 137:1587–1595. https://doi.org/10.1007/s00402-017-2786-8

    Article  CAS  PubMed  Google Scholar 

  26. Acar B (2020) Single versus double screw fixation for the treatment of scaphoid waist fractures: finite element analysis and preliminary clinical results in scaphoid nonunion. Jt Dis Relat Surg 31:73–80. https://doi.org/10.5606/ehc.2020.71521

    Article  PubMed  PubMed Central  Google Scholar 

  27. Manske PR, McCarthy JA, Strecker WB (1988) Use of the Herbert bone screw for scaphoid nonunions. Orthopedics 11:1653–1661

    Article  CAS  PubMed  Google Scholar 

  28. Trumble TE, Gilbert M, Murray LW et al (2000) Displaced scaphoid fractures treated with open reduction and internal fixation with a cannulated screw. J Bone Jt Surg Am 82:633–641

    Article  CAS  Google Scholar 

  29. Nakamoto JC, Xavier RM, Burgos FH et al (2022) Comparative analysis of scaphoid nonunion treatment with screw fixation and angular stable plate. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-022-04625-9

    Article  PubMed  Google Scholar 

  30. Ender HG (1977) A new method of treating traumatic cysts and pseudoarthrosis of the scaphoid (author’s transl). Unfallheilkunde 80:509–513

    CAS  PubMed  Google Scholar 

  31. Ansari SA, Kennedy JA, Younis F (2020) Postoperative outcomes of volar plate fixation in cases of scaphoid deformity or nonunion: a case series. J Wrist Surg 09:304–311. https://doi.org/10.1055/s-0040-1710383

    Article  Google Scholar 

  32. Esteban-Feliu I, Barrera-Ochoa S, Vidal-Tarrason N et al (2018) Volar plate fixation to treat scaphoid nonunion: a case series with minimum 3 years of follow-up. J Hand Surg Am 43:569.e1-569.e8. https://doi.org/10.1016/j.jhsa.2017.12.004

    Article  PubMed  Google Scholar 

  33. Schormans P, Brink P, Poeze M, Hannemann P (2018) Angular stable miniplate fixation of chronic unstable scaphoid nonunion. J Wrist Surg 07:024–030. https://doi.org/10.1055/s-0037-1603202

    Article  Google Scholar 

  34. Goodwin J, Castañeda P, Drace P, Edwards S (2017) A biomechanical comparison of screw and plate fixations for scaphoid fractures. J Wrist Surg. https://doi.org/10.1055/s-0037-1606123

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goodwin JA, Castañeda P, Shelhamer RP et al (2017) A comparison of plate versus screw fixation for segmental scaphoid fractures: a biomechanical study. Hand (N Y). https://doi.org/10.1177/1558944717732065

    Article  PubMed  Google Scholar 

  36. Dodds SD, Halim A (2016) Scaphoid plate fixation and volar carpal artery vascularized bone graft for recalcitrant scaphoid nonunions. J Hand Surg Am 41:e191–e198. https://doi.org/10.1016/j.jhsa.2016.04.021

    Article  PubMed  Google Scholar 

  37. Wang CJ (2012) Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 7:11. https://doi.org/10.1186/1749-799X-7-11

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mühldorfer-Fodor M, Wagner M, Kottmann T et al (2020) Comparison of scaphoid reconstruction with a non-vascularised bone graft, with and without shock waves; preliminary results. Handchir Mikrochir Plast Chir 52:404–412. https://doi.org/10.1055/a-1250-8078

    Article  PubMed  Google Scholar 

  39. Schleusser S, Song J, Stang FH et al (2020) Blood flow in the scaphoid is improved by focused extracorporeal shock wave therapy. Clin Orthop Relat Res 478:127–135. https://doi.org/10.1097/CORR.0000000000000993

    Article  PubMed  Google Scholar 

  40. Lynch NM, Linscheid RL (1997) Corrective osteotomy for scaphoid malunion: technique and long-term follow-up evaluation. J Hand Surg Am 22:35–43. https://doi.org/10.1016/S0363-5023(05)80177-7

    Article  CAS  PubMed  Google Scholar 

  41. Dodds SD, Panjabi MM, Slade JF (2006) Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation. J Hand Surg Am 31:405–413. https://doi.org/10.1016/j.jhsa.2005.09.014

    Article  PubMed  Google Scholar 

  42. McCallister WV, Knight J, Kaliappan R, Trumble TE (2003) Central placement of the screw in simulated fractures of the scaphoid waist: a biomechanical study. J Bone Jt Surg Ser A 85:72–77. https://doi.org/10.2106/00004623-200301000-00012

    Article  Google Scholar 

  43. Hudak PL, Amadio PC, Bombardier C (1996) Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder, and head). Am J Ind Med 29:602–608. https://doi.org/10.1002/(SICI)1097-0274(199606)29:6%3c602::AID-AJIM4%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  44. Hemelaers L, Angst F, Drerup S et al (2008) Reliability and validity of the german version of “the patient-rated wrist evaluation (PRWE)” as an outcome measure of wrist pain and disability in patients with acute distal radius fractures. J Hand Ther 21:366–376. https://doi.org/10.1197/j.jht.2008.03.002

    Article  PubMed  Google Scholar 

  45. Knobloch K, Kuehn M, Papst S et al (2011) German standardized translation of the Michigan hand outcomes questionnaire for patient-related outcome measurement in dupuytren disease. Plast Reconstr Surg 128:39e–40e. https://doi.org/10.1097/PRS.0b013e318218fd70

    Article  CAS  PubMed  Google Scholar 

  46. Amadio PC, Berquist TH, Smith DK et al (1989) Scaphoid malunion. J Hand Surg Am 14:679–687. https://doi.org/10.1016/0363-5023(89)90191-3

    Article  CAS  PubMed  Google Scholar 

  47. Bain GI, Smith ML, Watts AC (2011) Scaphoid imaging. In: Slutsky DJ, Slade JF 3rd (eds) The scaphoid. Thieme Medical Publishers Inc, New York, pp 22–30

    Google Scholar 

  48. Krimmer H, Krapohl B, Sauerbier M, Hahn P (1997) Post-traumatic carpal collapse (SLAC- and SNAC-wrist)–stage classification and therapeutic possibilities. Handchir Mikrochir Plast Chir 29:228–233

    CAS  PubMed  Google Scholar 

  49. Schmitt R, Van Schoonhoven J (2015) Skaphoidpseudarthrose. In: Schmitt R, Lanz U (eds) Bildgbende diagnostik der hand, 3rd edn. Georg Thieme Verlag, Stuttgart, pp 297–308

    Google Scholar 

  50. Schmidle G, Ebner HL, Klauser AS et al (2018) Correlation of CT imaging and histology to guide bone graft selection in scaphoid non-union surgery. Arch Orthop Trauma Surg 138:1–11

    Article  Google Scholar 

  51. Grewal R, Frakash U, Osman S, McMurtry RY (2013) A quantitative definition of scaphoid union: determining the inter-rater reliability of two techniques. J Orthop Surg Res. https://doi.org/10.1186/1749-799X-8-28

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bain GI, Bennett JD, MacDermid JC et al (1998) Measurement of the scaphoid humpback deformity using longitudinal computed tomography: intra- and interobserver variability using various measurement techniques. J Hand Surg Am 23:76–81. https://doi.org/10.1016/S0363-5023(98)80093-2

    Article  CAS  PubMed  Google Scholar 

  53. Greenspan A (2011) Orthopedic imaging: a practical approach. Lippincott Williams & Wilkins

    Google Scholar 

  54. Schlufter G (1975) Arthrosis deformans. In: Schmitt R, Lanz U (eds) Therapiewoche, 3rd edn. Thieme, pp 4666–4670

    Google Scholar 

  55. Dodds SD, Williams JB, Seiter M, Chen C (2018) Lessons learned from volar plate fixation of scaphoid fracture nonunions. J Hand Surg Eur 43:57–65. https://doi.org/10.1177/1753193417743636

    Article  Google Scholar 

  56. Quadlbauer S, Pezzei C, Jurkowitsch J et al (2019) Palmar angular stable plate fixation of nonunions and comminuted fractures of the scaphoid. Oper Orthop Traumatol. https://doi.org/10.1007/s00064-019-00623-0

    Article  PubMed  Google Scholar 

  57. Trumble TE, Clarke T, Kreder HJ (1996) Non-union of the scaphoid. treatment with cannulated screws compared with treatment with Herbert screws. J Bone Jt Surg Am 78:1829–1837

    Article  CAS  Google Scholar 

  58. Mehling IM, Arsalan-Werner A, Wingenbach V et al (2019) Practicability of a locking plate for difficult pathologies of the scaphoid. Arch Orthop Trauma Surg 139:1161–1169. https://doi.org/10.1007/s00402-019-03196-6

    Article  PubMed  Google Scholar 

  59. Putnam JG, Mitchell SM, DiGiovanni RM et al (2018) Outcomes of unstable scaphoid nonunion with segmental defect treated with plate fixation and autogenous cancellous graft. J Hand Surg Am 44:160.e1

    Article  PubMed  Google Scholar 

  60. Wu F, Ng CY, Hayton M (2019) The authors’ technique for volar plating of scaphoid nonunion. Hand Clin 35:281–286

    Article  PubMed  Google Scholar 

  61. Morgan SDJ, Sivakumar BS, Graham DJ (2021) Scaphoid plating for recalcitrant scaphoid fractures: a systematic review. J Hand Surg Eur 46:616–620

    Article  Google Scholar 

  62. Schaden W, Fischer A, Sailler A (2001) Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 387:90–94. https://doi.org/10.1097/00003086-200106000-00012

    Article  Google Scholar 

  63. Fallnhauser T, Wilhelm P, Priol A, Windhofer C (2019) Extracorporeal Shockwave Therapy for the treatment of scaphoid delayed union and nonunion: a retrospective analysis examining the rate of consolidation and further outcome variables. Handchir Mikrochir Plast Chir 51:164–170. https://doi.org/10.1055/a-0914-2963

    Article  PubMed  Google Scholar 

  64. Megerle K, Worg H, Christopoulos G et al (2011) Gadolinium-enhanced preoperative MRI scans as a prognostic parameter in scaphoid nonunion. J Hand Surg Eur 36:23–28. https://doi.org/10.1177/1753193410375776

    Article  CAS  Google Scholar 

  65. Rancy SK, Swanstrom MM, DiCarlo EF et al (2018) Success of scaphoid nonunion surgery is independent of proximal pole vascularity. J Hand Surg Eur 43:32–40. https://doi.org/10.1177/1753193417732003

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rose-Marie Sedlacek for proof reading this article. Without her help, this English publication would not have been possible.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Quadlbauer.

Ethics declarations

Conflict of interest

The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical review committee statement

Local institutional review board approval of the Austrian Workers’ Compensation Board (AUVA) was obtained for this study (Number: 08/2019).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadlbauer, S., Pezzei, C., Jurkowitsch, J. et al. Double screw versus angular stable plate fixation of scaphoid waist nonunions in combination with intraoperative extracorporeal shockwave therapy (ESWT). Arch Orthop Trauma Surg 143, 4565–4574 (2023). https://doi.org/10.1007/s00402-023-04806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-04806-0

Keywords

Navigation