Skip to main content
Log in

Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—a radiographic analysis

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Albeit the implantation of magnesium-based biodegradable implants can avoid a second surgery for implant removal, the postoperative occurrence of radiolucent zones around these implants based on corrosion processes has not been previously investigated in children and adolescents. We sought to characterize the distinct temporal and spatial dynamics for magnesium-based implants based on standard clinical routine radiographs.

Materials and methods

We retrospectively analyzed 29 patients, treated with magnesium-based compression screws (MAGNEZIX® CS 2.7 mm, CS 3.2 mm, CSC 4.8 mm; Syntellix AG) for fracture fixation, osteotomy, or osteochondral refixation. During a follow-up examination, the clinical and functional status was evaluated. Based on digital radiographs, the ratio of the area of the radiolucent zone and that of the screw was evaluated to assess implant degradation at two follow-up visits (i.e., after 6–8 weeks and 12–24 weeks).

Results

In 29 patients (16/29 females, 14.03 ± 2.13 years), a total of 57 implants were evaluated that were used for osteotomy (n = 13, screws n = 26), fracture fixation (n = 9, screws n = 18), or osteochondral refixation (n = 7, screws n = 13). All patients healed without complications and regained full function. Radiolucent zones were observed in 27/29 patients at the first follow-up, with significantly decreased ratios at the second follow-up (2.10 ± 0.55 vs 1.64 ± 0.60, p = 0.0006). Regression analyses were performed to assess the temporal dynamics of radiolucent zones and revealed significant logarithmic developments for the 2.7 mm and 3.2 mm screws, marked by a strong ratio decrease during the first weeks and an almost complete disappearance after approximately 100 days and 200 days, respectively. In contrast, the ceramic-coated 4.8 mm screws presented a significant linear and slower decrease of radiolucent zones.

Conclusion

Radiolucent zones are a common phenomenon in the course of implant degradation. However, they represent a self-limiting phenomenon. Remarkably, neither implant failure nor affected implant function is noted in this context. Yet, the microstructural changes accompanying the presence of radiolucent zones remain to be analyzed by three-dimensional high-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RZ:

Radiolucent zone

AP:

Anterior–posterior

SA:

Screw area

SD:

Standard deviation

CI:

Confidence intervall

OS:

Osteosynthesis

ET:

Elmslie-Trillat osteotomy

RFix:

Osteochondral refixation

UAJ:

Upper ankle joint

DT:

Distal tibia

PT:

Proximal tibia

yrs:

Years

d:

Days

References

  1. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP (2004) Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res 19(12):1976–1981

    Article  PubMed  Google Scholar 

  2. Mills LA, Simpson AH (2013) The risk of non-union per fracture in children. J Child Orthop 7(4):317–322

    Article  PubMed  PubMed Central  Google Scholar 

  3. Implantatentfernung nach Osteosynthese. 2018 [Available from: https://www.awmf.org/uploads/tx_szleitlinien/012-004l_S1_Implantatentfernung-nach-Osteosynthese_2018-08.pdf.

  4. Loder RT, Feinberg JR (2006) Orthopaedic implants in children: survey results regarding routine removal by the pediatric and nonpediatric specialists. J Pediatr Orthop 26(4):510-9

  5. Stürznickel J, Delsmann MM, Jungesblut OD, Stücker R, Knorr C, Rolvien T, Kertai M, Rupprecht M (2021) Safety and performance of biodegradable magnesium-based implants in children and adolescents. Injury 52(8):2265–2271

    Article  PubMed  Google Scholar 

  6. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT (2016) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 107:247–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song B, Li W, Chen Z, Fu G, Li C, Liu W, Li Y, Qin L, Ding Y (2017) Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction-A cadaveric experimental study. J Orthop Translat 8:32–39

    Article  PubMed  Google Scholar 

  8. Jungesblut OD, Moritz M, Spiro AS, Stücker R, Rupprecht M (2021) Fixation of unstable osteochondritis dissecans lesions and displaced osteochondral fragments using new biodegradable magnesium pins in adolescents. Cartilage 13(1suppl):302S-S310

    Article  CAS  PubMed  Google Scholar 

  9. Herber V, Labmayr V, Sommer NG, Marek R, Wittig U, Leithner A, Seibert F, Holweg P (2022) Can hardware removal be avoided using bioresorbable Mg-Zn-Ca screws after medial malleolar fracture fixation? Mid-term results of a first-in-human study. Injury 53(3):1283–1288

    Article  PubMed  Google Scholar 

  10. Yang YW, He CX, Dianyu E, Yang WJ, Qi FW, Xie DQ, Shen LD, Peng SP, Shuai CJ (2020) Mg bone implant: features, developments and perspectives. Mater Design 185:108259

    Article  CAS  Google Scholar 

  11. Witte F (2015) Reprint of: the history of biodegradable magnesium implants: a review. Acta Biomater 23:S28–S40

    Article  PubMed  Google Scholar 

  12. Noviana D, Paramitha D, Ulum MF, Hermawan H (2016) The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J Orthop Translat 5:9–15

    Article  PubMed  Google Scholar 

  13. Wang JL, Xu JK, Hopkins C, Chow DH, Qin L (2020) Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv Sci (Weinh) 7(8):1902443

    Article  CAS  PubMed  Google Scholar 

  14. Bettles C, Barnett M (2012) Advances in wrought magnesium alloys : fundamentals of processing, properties and applications. Woodhead Publishing, Oxford

    Book  Google Scholar 

  15. Tian L, Tang N, Ngai T, Wu C, Ruan Y, Huang L, Qin L (2019) Hybrid fracture fixation systems developed for orthopaedic applications: a general review. J Orthop Translat 16:1–13

    Article  CAS  PubMed  Google Scholar 

  16. Windhagen H, Radtke K, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U, Schavan R, Stukenborg-Colsman C, Waizy H (2013) Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online 12:62

    Article  PubMed  PubMed Central  Google Scholar 

  17. Konneker S, Krockenberger K, Pieh C, von Falck C, Brandewiede B, Vogt PM, Kirschner MH, Ziegler A (2019) Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: protocol for the randomized controlled SCAMAG clinical trial. BMC Musculoskelet Disord 20(1):357

    Article  PubMed  PubMed Central  Google Scholar 

  18. Plaass C, von Falck C, Ettinger S, Sonnow L, Calderone F, Weizbauer A, Reifenrath J, Claassen L, Waizy H, Daniilidis K, Stukenborg-Colsman C, Windhagen H (2018) Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies - 3 year results of a randomized clinical trial. J Orthop Sci 23(2):321–327

    Article  PubMed  Google Scholar 

  19. Seitz JM, Lucas A, Kirschner M (2016) Magnesium-based compression screws: a novelty in the clinical use of implants. Jom-Us 68(4):1177–1182

    Article  CAS  Google Scholar 

  20. Plaass C, Ettinger S, Sonnow L, Koenneker S, Noll Y, Weizbauer A, Reifenrath J, Claassen L, Daniilidis K, Stukenborg-Colsman C, Windhagen H (2016) Early results using a biodegradable magnesium screw for modified chevron osteotomies. J Orthop Res 34(12):2207–2214

    Article  PubMed  Google Scholar 

  21. May H, Alper Kati Y, Gumussuyu G, Yunus Emre T, Unal M, Kose O (2020) Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. J Orthop Traumatol 21(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuhlmann J, Bartsch I, Willbold E, Schuchardt S, Holz O, Hort N, Hoche D, Heineman WR, Witte F (2013) Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater 9(10):8714–8721

    Article  CAS  PubMed  Google Scholar 

  23. Meier R, Panzica M (2017) First results with a resorbable MgYREZr compression screw in unstable scaphoid fractures show extensive bone cysts. Handchir Mikrochir Plast Chir 49(1):37–41

    PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rupprecht.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This study was performed in accordance with the local ethics committee and was approved by the institutional review board (Ethikkommission Ärztekammer Hamburg WF-075/20).

Informed consent

Informed consent was obtained from all patients or the legal guardians of the child.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delsmann, M.M., Stürznickel, J., Kertai, M. et al. Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—a radiographic analysis. Arch Orthop Trauma Surg 143, 2297–2305 (2023). https://doi.org/10.1007/s00402-022-04418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04418-0

Keywords

Navigation