Skip to main content
Log in

Bicompartmental, medial and patellofemoral knee replacement might be able to maintain unloaded knee kinematics

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) are standard procedures for treating knee joint arthritis. Neither UKA nor TKA seems to be optimally suited for patients with bicompartmental osteoarthritis that affects only the medial and patellofemoral compartments. A bicompartmental knee arthroplasty (BKA) was designed for this patient group. This study aimed to compare the effectiveness of a BKA and TKA in restoring the kinematics of the knee joint.

Materials and methods

In this in vitro study, three types of knee arthroplasties (BKA, posterior cruciate ligament-retaining, and posterior cruciate ligament-resecting TKA) were biomechanically tested in six freshly frozen human cadaveric specimens. Complete three-dimensional kinematics was analyzed for each knee arthroplasty during both passive and loaded conditions in a validated knee kinematics rig. Infrared motion capture cameras and retroreflective markers were used for recording data.

Results

No significant differences could be found between the three types of arthroplasties. However, similar kinematic changes between BKA and a native knee joint were documented under passive conditions. However, in a weight-bearing mode, a significant decrease in femoral rotation during the range of motion was found in arthroplasties compared to the native knee, probably caused by contraction of the quadriceps femoris muscle, which leads to a decrease in the anterior translation of the tibia.

Conclusions

Kinematics similar to that of the natural knee can be achieved by BKA under passive conditions. However, no functional advantage of BKA over TKA was detected, which suggests that natural knee kinematics cannot be fully imitated by an arthroplasty yet. Further prospective studies are required to determine the anatomic and design factors that might affect the physiologic kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Varacallo MA, Herzog L, Toossi N, Johanson NA (2017) Ten-year trends and independent risk factors for unplanned readmission following elective total joint arthroplasty at a large urban academic hospital. J Arthroplasty 32:1739–1746. https://doi.org/10.1016/j.arth.2016.12.035

    Article  PubMed  Google Scholar 

  2. Booth RE Jr (2001) The posterior stabilized: a knee for all seasons. Orthopedics 24:887–888

    Article  Google Scholar 

  3. Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D (2001) Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res 392:208–212. https://doi.org/10.1097/00003086-200111000-00025

    Article  Google Scholar 

  4. Daniilidis K, Holl S, Gosheger G, Dieckmann R, Martinelli N, Ostermeier S, Tibesku CO (2013) Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the sagittal plane. Knee Surg Sports Traumatol Arthrosc 21:2392–2397. https://doi.org/10.1097/00003086-200111000-00025

    Article  PubMed  Google Scholar 

  5. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655. https://doi.org/10.1302/0301-620X.87B5.15602

    Article  CAS  PubMed  Google Scholar 

  6. Insall JN, Ranawat CS, Aglietti P, Shine J (1976) A comparison of four models of total knee-replacement prostheses. J Bone Joint Surg Am 58:754–765. https://doi.org/10.2106/00004623-197658060-00003

    Article  CAS  PubMed  Google Scholar 

  7. Walker PS, Sathasivam S (2000) Design forms of total knee replacement. Proc Inst Mech Eng H 214:101–119. https://doi.org/10.1243/0954411001535282

    Article  CAS  PubMed  Google Scholar 

  8. Gemayel AC, Varacallo M (2019) Total knee replacement (TKR) techniques (updated 24 Feb 2019). In: StatPearls [Internet]. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK538208/

  9. Sheth NP, Husain A, Nelson CL (2017) Surgical techniques for total knee arthroplasty: measured resection, gap balancing, and hybrid. J Am Acad Orthop Surg 25:499–508. https://doi.org/10.5435/JAAOS-D-14-00320

    Article  PubMed  Google Scholar 

  10. Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38:293–298. https://doi.org/10.1016/j.jbiomech.2004.02.010

    Article  PubMed  Google Scholar 

  11. Müller W (1982) Das Knie: Form, Funktion und ligamentäre Wiederherstellungschirurgie Wiederherstellungschirurgie. Springer, Berlin

    Book  Google Scholar 

  12. Goodfellow J, O’Connor J (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg Br 60B:358–369. https://doi.org/10.1302/0301-620X.60B3.581081

    Article  Google Scholar 

  13. Goodfellow J, O’Connor J (1992) The anterior cruciate ligament in kneearthroplasty. A risk-factor with unconstrained meniscal prostheses. Clin Orthop Relat Res 276:245–252

    Article  Google Scholar 

  14. Ledingham J, Regan M, Jones A, Doherty M (1993) Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis 52:520–526. https://doi.org/10.1136/ard.52.7.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Victor J, Van Glabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J (2009) An experimental model for kinematic analysis of the knee. J Bone Joint Surg Am 91:150–163. https://doi.org/10.2106/JBJS.I.00498

    Article  PubMed  Google Scholar 

  16. Zavatsky AB (1997) A kinematic-freedom analysis of a flexed-knee-stance testing rig. J Biomech 30:277–280. https://doi.org/10.1016/S0021-9290(96)00142-X

    Article  CAS  PubMed  Google Scholar 

  17. Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 28:419–428. https://doi.org/10.1002/jor.21019

    Article  PubMed  Google Scholar 

  18. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144. https://doi.org/10.1115/1.3138397

    Article  CAS  PubMed  Google Scholar 

  19. Freeman MA, Pinskerova V (2003) The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res 410:35–43. https://doi.org/10.1097/01.blo.0000063598.67412.0d

    Article  Google Scholar 

  20. Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208. https://doi.org/10.1016/j.jbiomech.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  21. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82:1196–1198. https://doi.org/10.1302/0301-620X.82B8.0821196

    Article  CAS  PubMed  Google Scholar 

  22. Leffler J, Scheys L, Planté-Bordeneuve T, Callewaert B, Labey L, Bellemans J, Franz A (2012) Joint kinematics following bi-compartmental knee replacement during daily life motor tasks. Gait Posture 36:454–460. https://doi.org/10.1016/j.gaitpost.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  23. Rolston L, Siewert K (2009) Assessment of knee alignment after bicompartmental knee arthroplasty. J Arthroplasty 24:1111–1114. https://doi.org/10.1016/j.arth.2008.07.006

    Article  PubMed  Google Scholar 

  24. Wang H, Dugan E, Frame J, Rolston L (2009) Gait analysis after bi-compartmental knee replacement. Clin Biomech 24:751–754. https://doi.org/10.1016/j.clinbiomech.2009.07.014

    Article  Google Scholar 

  25. Müller M, Matziolis G, Falk R, Hommel H (2012) The bicompartmental knee joint prosthesis Journey Deuce: failure analysis and optimization strategies. Orthopade 41:894–904

    Article  Google Scholar 

  26. Palumbo BT, Henderson ER, Edwards PK, Burris RB, Gutiérrez S, Raterman SJ (2011) Initial experience of the Journey-Deuce bicompartmental knee prosthesis: a review of 36 cases. J Arthroplasty 26:40–45

    Article  Google Scholar 

  27. Dudhniwala AG, Rath NK, Joshy S, Forster MC, White SP (2016) Early failure with the Journey-Deuce bicompartmental knee arthroplasty. Eur J Orthop Surg Traumatol 26:517–521. https://doi.org/10.1007/s00590-016-1760-4

    Article  CAS  PubMed  Google Scholar 

  28. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138. https://doi.org/10.1097/01.blo.0000063121.39522.19

    Article  Google Scholar 

  29. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53. https://doi.org/10.1302/0301-620X.84B1.0840050

    Article  CAS  PubMed  Google Scholar 

  30. Chouteau J, Lerat JL, Testa R, Moyen B, Fessy MH, Banks SA (2009) Kinematics of a cementless mobile bearing posterior cruciate ligament-retaining total knee arthroplasty. Knee 16:223–227. https://doi.org/10.1016/j.knee.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  31. Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, Lapp MA (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res 356:47–57. https://doi.org/10.1097/00003086-199811000-00009

    Article  Google Scholar 

  32. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189. https://doi.org/10.1097/01.blo.0000148777.98244.84

    Article  Google Scholar 

  33. Harman MK, Banks SA, Kirschner S, Lutzner J (2012) Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations. BMC Musculoskelet Disord 13:206. https://doi.org/10.1186/1471-2474-13-206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Innocenti B, Pianigiani S, Labey L, Victor J, Bellemans J (2011) Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J Biomech 44:1573–1581. https://doi.org/10.1016/j.jbiomech.2011.02.081

    Article  PubMed  Google Scholar 

  35. Kuroyanagi Y, Mu S, Hamai S, Robb WJ, Banks SA (2012) In vivo knee kinematics during stair and deep flexion activities in patients with bicruciate substituting total knee arthroplasty. J Arthroplasty 27:122–128. https://doi.org/10.1016/j.arth.2011.03.005

    Article  PubMed  Google Scholar 

  36. Most E, Zayontz S, Li G, Otterberg E, Sabbag K, Rubash HE (2003) Femoral rollback after cruciate-retaining and stabilizing total knee arthroplasty. Clin Orthop Relat Res 410:101–113. https://doi.org/10.1097/01.blo.0000062380.79828.2e

    Article  Google Scholar 

  37. Daniel DM, Stone ML, Barnett P, Sachs R (1988) Use of the quadriceps active test to diagnose posterior cruciate-ligament disruption and measure posterior laxity of the knee. J Bone Joint Surg Am 70:386–391. https://doi.org/10.2106/00004623-198870030-00010

    Article  CAS  PubMed  Google Scholar 

  38. Mu S, Moro-Oka T, Johal P, Hamai S, Freeman MA, Banks SA (2011) Comparison of static and dynamic knee kinematics during squatting. Clin Biomech 26:106–108

    Article  CAS  Google Scholar 

  39. Daniilidis K, Skwara A, Vieth V, Fuchs-Winkelmann S, Heindel W, Stuckmann V, Tibesku CO (2012) Highly conforming polyethylene inlays reduce the in vivo variability of knee joint kinematics after total knee arthroplasty. Knee 19:260–265

    Article  Google Scholar 

  40. Tibesku CO, Daniilidis K, Skwara A, Dierkes T, Rosenbaum D, Fuchs WS (2011) Gait analysis and electromyography in fixed- and mobile-bearing total knee replacement: a prospective, comparative study. Knee Surg Sports Traumatol Arthrosc 19:2052–2059

    Article  Google Scholar 

  41. Price AJ, O’Connor JJ, Murray DW, Dodd CA, Goodfellow JW (2007) A history of Oxford unicompartmental knee arthroplasty. Orthopedics 30:7–10

    Article  Google Scholar 

  42. Banks SA, Fregly BJ, Boniforti F, Reinschmidt C, Romagnoli S (2005) Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements. Knee Surg Sports Traumatol Arthrosc 13:551–556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daiwei Yao or Kiriakos Daniilidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, D., Akram, I., Daniilidis, K. et al. Bicompartmental, medial and patellofemoral knee replacement might be able to maintain unloaded knee kinematics. Arch Orthop Trauma Surg 142, 501–509 (2022). https://doi.org/10.1007/s00402-021-03816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-03816-0

Keywords

Navigation