Skip to main content
Log in

Cell-free cartilage repair in large defects of the knee: increased failure rate 5 years after implantation of a collagen type I scaffold

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Cartilage defects of the knee remain a challenging problem in orthopedic surgery despite the ongoing improvements in regenerative procedures such as the autologous chondrocyte transplantation. Due to the lack of donor-site morbidity and the single-stage procedure cell-free scaffolds are an interesting alternative to cell-based procedures. But as currently mid- and long-term data are lacking, the aim of the present study was to present mid-term clinical, radiological and histological results of a cell-free collagen type I scaffolds for cartilage repair.

Materials and methods

Twenty-eight patients were followed prospectively. Clinical evaluation using patient-reported outcome measures (KOOS, IKDC; VAS for pain, Tegner score for activity) as well as radiologic evaluation of the repair tissue (MOCART) was performed at 1 year, 2 years and 5 years. Histologic evaluation of the repair tissue was done in case of revision surgery using the ICRS II score for human cartilage repair.

Results

In these large cartilage defects with a mean defect size of 3.7 ± 1.9 cm2, clinical failure necessitating revision surgery was seen in 5 of 28 patients (18%). While the remaining patients showed good-to-excellent clinical results (KOOS, IKDC, VAS, Tegner), the radiologic appearance of the repair tissue showed a reduction of the MOCART score between the 2- and 5-year follow-up. Histologic evaluation of the repair tissue showed a cartilage-like appearance with no signs of inflammation or cell death but an overall medium tissue quality according to the ICRS II Score.

Conclusion

The use of this cell-free collagen type I scaffold for large defects showed increased wear of the repair tissue and clinical failure in 18% of cases at 5-year follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Niemeyer P, Feucht MJ, Fritz J, Albrecht D, Spahn G, Angele P (2016) Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 136:891–897

    Article  PubMed  Google Scholar 

  2. Spahn G, Fritz J, Albrecht D, Hofmann GO, Niemeyer P (2016) Characteristics and associated factors of Klee cartilage lesions: preliminary baseline-data of more than 1000 patients from the German cartilage registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 136:805–810

    Article  PubMed  Google Scholar 

  3. Spahn G, Plettenberg H, Hoffmann M, Klemm HT, Brochhausen-Delius C, Hofmann GO (2017) The frequency of cartilage lesions in non-injured knees with symptomatic meniscus tears: results from an arthroscopic and NIR- (near-infrared) spectroscopic investigation. Arch Orthop Trauma Surg 137:837–844

    Article  PubMed  Google Scholar 

  4. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484

    Article  PubMed  Google Scholar 

  5. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–2112

    PubMed  Google Scholar 

  6. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14:1119–1125

    Article  PubMed  CAS  Google Scholar 

  7. Mithoefer K, Williams RJ 3rd, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34:1413–1418

    Article  PubMed  Google Scholar 

  8. Mithoefer K, Venugopal V, Manaqibwala M (2016) Incidence, Degree, and Clinical Effect of Subchondral Bone Overgrowth After Microfracture in the Knee. Am J Sports Med 44:2057–2063

    Article  PubMed  Google Scholar 

  9. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37:902–908

    Article  PubMed  Google Scholar 

  10. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P (2012) Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 40:325–331

    Article  PubMed  Google Scholar 

  11. Aae TF, Randsborg PH, Luras H, Aroen A, Lian OB (2018) Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc 26:1044–1052

    PubMed  Google Scholar 

  12. Niemeyer P, Becher C, Buhs M, Fickert S, Gelse K, Gunther D, Kaelin R, Kreuz P, Lutzner J, Nehrer S, Madry H, Marlovits S, Mehl J, Ott H, Pietschmann M, Spahn G, Tischer T, Volz M, Walther M, Welsch G, Zellner J, Zinser W, Angele P (2018) Significance of matrix-augmented bone marrow stimulation for treatment of cartilage defects of the knee: a consensus statement of the DGOU working group on tissue regeneration. Z Orthop Unfall. https://doi.org/10.1055/a-0591-6457

    Article  PubMed  Google Scholar 

  13. Gao L, Orth P, Cucchiarini M, Madry H (2017) Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med. https://doi.org/10.1177/0363546517740575363546517740575

    Article  PubMed  Google Scholar 

  14. Lee YH, Suzer F, Thermann H (2014) Autologous matrix-induced chondrogenesis in the knee: a review. Cartilage 5:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  15. Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD (2012) Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20:1915–1922

  16. Roessler PP, Pfister B, Gesslein M, Figiel J, Heyse TJ, Colcuc C, Lorbach O, Efe T, Schuttler KF (2015) Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int Orthop 39:2473–2479

    Article  PubMed  Google Scholar 

  17. Schuttler KF, Schenker H, Theisen C, Schofer MD, Getgood A, Roessler PP, Struewer J, Rominger MB, Efe T (2014) Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation. Knee Surg Sports Traumatol Arthrosc 22:1270–1276

    Article  PubMed  Google Scholar 

  18. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613

    Article  PubMed  CAS  Google Scholar 

  19. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 43–49

  20. Flandry F, Hunt JP, Terry GC, Hughston JC (1991) Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 19:112–118

    Article  PubMed  CAS  Google Scholar 

  21. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  PubMed  CAS  Google Scholar 

  22. Roos EM, Toksvig-Larsen S (2003) Knee injury and Osteoarthritis Outcome Score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1:17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    Article  PubMed  Google Scholar 

  24. Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S (2010) A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 38:880–890

    Article  PubMed  Google Scholar 

  25. Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, Smailys A (2005) A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 21:1066–1075

    Article  PubMed  Google Scholar 

  26. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Jt Surg Am 87:1911–1920

    Article  Google Scholar 

  27. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22:1180–1186

    Article  PubMed  Google Scholar 

  28. Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221

    Article  PubMed  Google Scholar 

  29. Salzmann GM, Sah B, Sudkamp NP, Niemeyer P (2013) Reoperative characteristics after microfracture of knee cartilage lesions in 454 patients. Knee Surg Sports Traumatol Arthrosc 21:365–371

    Article  PubMed  CAS  Google Scholar 

  30. Salzmann GM, Sah B, Sudkamp NP, Niemeyer P (2013) Clinical outcome following the first-line, single lesion microfracture at the knee joint. Arch Orthop Trauma Surg 133:303–310

    Article  PubMed  CAS  Google Scholar 

  31. Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Bosch U, Erggelet C, Fickert S, Gebhard H, Gelse K, Gunther D, Hoburg A, Kasten P, Kolombe T, Madry H, Marlovits S, Meenen NM, Muller PE, Noth U, Petersen JP, Pietschmann M, Richter W, Rolauffs B, Rhunau K, Schewe B, Steinert A, Steinwachs MR, Welsch GH, Zinser W, Fritz J (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23:426–435

    Article  PubMed  CAS  Google Scholar 

  32. Riboh JC, Cvetanovich GL, Cole BJ, Yanke AB (2017) Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc 25:3786–3799

    Article  PubMed  Google Scholar 

  33. Schuettler KF, Struewer J, Rominger MB, Rexin P, Efe T (2013) Repair of a chondral defect using a cell free scaffold in a young patient–a case report of successful scaffold transformation and colonisation. BMC Surg 13:11

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brix MO, Stelzeneder D, Chiari C, Koller U, Nehrer S, Dorotka R, Windhager R, Domayer SE (2014) Treatment of full-thickness chondral defects with Hyalograft C in the knee: long-term results. Am J Sports Med 42:1426–1432

    Article  PubMed  Google Scholar 

  35. Ebert JR, Fallon M, Zheng MH, Wood DJ, Ackland TR (2012) A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 40:1527–1537

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Friedrich Schüttler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schüttler, KF., Götschenberg, A., Klasan, A. et al. Cell-free cartilage repair in large defects of the knee: increased failure rate 5 years after implantation of a collagen type I scaffold. Arch Orthop Trauma Surg 139, 99–106 (2019). https://doi.org/10.1007/s00402-018-3028-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-3028-4

Keywords

Navigation