Skip to main content

Advertisement

Log in

Intracellular calcium leak as a therapeutic target for RYR1-related myopathies

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

RYR1 encodes the type 1 ryanodine receptor, an intracellular calcium release channel (RyR1) on the skeletal muscle sarcoplasmic reticulum (SR). Pathogenic RYR1 variations can destabilize RyR1 leading to calcium leak causing oxidative overload and myopathy. However, the effect of RyR1 leak has not been established in individuals with RYR1-related myopathies (RYR1-RM), a broad spectrum of rare neuromuscular disorders. We sought to determine whether RYR1-RM affected individuals exhibit pathologic, leaky RyR1 and whether variant location in the channel structure can predict pathogenicity. Skeletal muscle biopsies were obtained from 17 individuals with RYR1-RM. Mutant RyR1 from these individuals exhibited pathologic SR calcium leak and increased activity of calcium-activated proteases. The increased calcium leak and protease activity were normalized by ex-vivo treatment with S107, a RyR stabilizing Rycal molecule. Using the cryo-EM structure of RyR1 and a new dataset of > 2200 suspected RYR1-RM affected individuals we developed a method for assigning pathogenicity probabilities to RYR1 variants based on 3D co-localization of known pathogenic variants. This study provides the rationale for a clinical trial testing Rycals in RYR1-RM affected individuals and introduces a predictive tool for investigating the pathogenicity of RYR1 variants of uncertain significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and material availability

Antibodies and Rycals used in this study can be purchased from companies (as indicated in the methods section) not affiliated with any of the authors (none of the authors receive any income from selling any of the reagents used in this study), some of the reagents can be obtained from the Marks laboratory using an MTA with Columbia University.

References

  1. Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ (2011) Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 70:662–665. https://doi.org/10.1002/ana.22510

    Article  PubMed  Google Scholar 

  2. Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W et al (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14:196–207. https://doi.org/10.1016/j.cmet.2011.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andersson DC, Meli AC, Reiken S, Betzenhauser MJ, Umanskaya A, Shiomi T et al (2012) Leaky ryanodine receptors in beta-sarcoglycan deficient mice: a potential common defect in muscular dystrophy. Skelet Muscle 2:9. https://doi.org/10.1186/2044-5040-2-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Avila G, O'Brien JJ, Dirksen RT (2001) Excitation–contraction uncoupling by a human central core disease mutation in the ryanodine receptor. Proc Natl Acad Sci U S A 98:4215–4220. https://doi.org/10.1073/pnas.071048198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L et al (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330. https://doi.org/10.1038/nm.1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW et al (2008) Remodeling of ryanodine receptor complex causes "leaky" channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 105:2198–2202. https://doi.org/10.1073/pnas.0711074105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC et al (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523

    Article  CAS  Google Scholar 

  8. Bussiere R, Lacampagne A, Reiken S, Liu X, Scheuerman V, Zalk R et al (2017) Amyloid beta production is regulated by beta2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J Biol Chem 292:10153–10168. https://doi.org/10.1074/jbc.M116.743070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA et al (2016) Structural basis for gating and activation of RyR1. Cell 167(145–157):e117. https://doi.org/10.1016/j.cell.2016.08.075

    Article  CAS  Google Scholar 

  10. Dlamini N, Voermans NC, Lillis S, Stewart K, Kamsteeg EJ, Drost G et al (2013) Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord 23:540–548. https://doi.org/10.1016/j.nmd.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T et al (2012) Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain 135:1115–1127. https://doi.org/10.1093/brain/aws036

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ducreux S, Zorzato F, Muller C, Sewry C, Muntoni F, Quinlivan R et al (2004) Effect of ryanodine receptor mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals and patients affected by central core disease. J Biol Chem 279:43838–43846. https://doi.org/10.1074/jbc.M403612200

    Article  CAS  PubMed  Google Scholar 

  13. Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S et al (2008) RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knock-in mice. Cell 133:53–65. https://doi.org/10.1016/j.cell.2008.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fauconnier J, Meli AC, Thireau J, Roberge S, Shan J, Sassi Y et al (2011) Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proc Natl Acad Sci U S A 108:13258–13263. https://doi.org/10.1073/pnas.1100286108

    Article  PubMed  PubMed Central  Google Scholar 

  15. https://gnomad.broadinstitute.org/. Accessed 6 Mar 2018

  16. https://www.emhg.org/diagnostic-mutations. https://www.emhg.org/diagnostic-mutations. Accessed 07 Mar 2019

  17. Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267:9474–9477

    CAS  PubMed  Google Scholar 

  18. Kapplinger JD, Pundi KN, Larson NB, Callis TE, Tester DJ, Bikker H et al (2018) Yield of the RYR2 genetic test in suspected catecholaminergic polymorphic ventricular tachycardia and implications for test interpretation. Circ Genom Precis Med 11:e001424. https://doi.org/10.1161/CIRCGEN.116.001424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knoblauch M, Dagnino-Acosta A, Hamilton SL (2013) Mice with RyR1 mutation (Y524S) undergo hypermetabolic response to simvastatin. Skelet Muscle 3:22. https://doi.org/10.1186/2044-5040-3-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lacampagne A, Liu X, Reiken S, Bussiere R, Meli AC, Lauritzen I et al (2017) Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathol 134:749–767. https://doi.org/10.1007/s00401-017-1733-7

    Article  CAS  PubMed  Google Scholar 

  21. Lee CS, Hanna AD, Wang H, Dagnino-Acosta A, Joshi AD, Knoblauch M et al (2017) A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun 8:14659. https://doi.org/10.1038/ncomms14659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W et al (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118:2230–2245. https://doi.org/10.1172/JCI35346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD et al (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35. https://doi.org/10.1016/j.cell.2005.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lesh RE, Marks AR, Somlyo AV, Fleischer S, Somlyo AP (1993) Anti-ryanodine receptor antibody binding sites in vascular and endocardial endothelium. Circ Res 72:481–488

    Article  CAS  Google Scholar 

  25. Levin TR, Corley DA, Jensen CD, Marks AR, Zhao WK, Zebrowski AM et al (2017) Genetic biomarker prevalence is similar in fecal immunochemical test positive and negative colorectal cancer tissue. Dig Dis Sci 62:678–688. https://doi.org/10.1007/s10620-016-4433-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu X, Betzenhauser MJ, Reiken S, Meli AC, Xie W, Chen BX et al (2012) Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 150:1055–1067. https://doi.org/10.1016/j.cell.2012.06.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loseth S, Voermans NC, Torbergsen T, Lillis S, Jonsrud C, Lindal S et al (2013) A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J Neurol 260:1504–1510. https://doi.org/10.1007/s00415-012-6817-7

    Article  CAS  PubMed  Google Scholar 

  28. Lotteau S, Ivarsson N, Yang Z, Restagno D, Colyer J, Hopkins P et al (2019) A Mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl Sci 4:509–523. https://doi.org/10.1016/j.jacbts.2019.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marks AR (2002) Ryanodine receptors, FKBP12, and heart failure. Front Biosci 7:d970–977

    CAS  PubMed  Google Scholar 

  30. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  CAS  Google Scholar 

  31. Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V et al (2016) Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci U S A 113:9069–9074. https://doi.org/10.1073/pnas.1609707113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matthews E, Neuwirth C, Jaffer F, Scalco RS, Fialho D, Parton M et al (2018) Atypical periodic paralysis and myalgia: a novel RYR1 phenotype. Neurology 90:e412–e418. https://doi.org/10.1212/wnl.0000000000004894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michelucci A, De Marco A, Guarnier FA, Protasi F, Boncompagni S (2017) Antioxidant treatment reduces formation of structural cores and improves muscle function in RYR1(Y522S/WT) mice. Oxid Med Cell Longev 2017:6792694. https://doi.org/10.1155/2017/6792694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9:e1003709. https://doi.org/10.1371/journal.pgen.1003709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santulli G, Xie W, Reiken SR, Marks AR (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112:11389–11394. https://doi.org/10.1073/pnas.1513047112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A et al (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120:4375–4387. https://doi.org/10.1172/JCI37649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tilgen N, Zorzato F, Halliger-Keller B, Muntoni F, Sewry C, Palmucci LM et al (2001) Identification of four novel mutations in the C-terminal membrane spanning domain of the ryanodine receptor 1: association with central core disease and alteration of calcium homeostasis. Hum Mol Genet 10:2879–2887. https://doi.org/10.1093/hmg/10.25.2879

    Article  CAS  PubMed  Google Scholar 

  38. Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS et al (2018) Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 265:2506–2524. https://doi.org/10.1007/s00415-018-9033-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turner RM, Pirmohamed M (2019) Statin-related myotoxicity: a comprehensive review of pharmacokinetic, pharmacogenomic and muscle components. J Clin Med. https://doi.org/10.3390/jcm9010022

    Article  PubMed  PubMed Central  Google Scholar 

  40. Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 111:15250–15255. https://doi.org/10.1073/pnas.1412754111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S et al (2015) Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med 21:1262–1271. https://doi.org/10.1038/nm.3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ et al (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840

    Article  CAS  Google Scholar 

  43. Wehrens XH, Lehnart SE, Reiken S, van der Nagel R, Morales R, Sun J et al (2005) Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci U S A 102:9607–9612. https://doi.org/10.1073/pnas.0500353102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D et al (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296. https://doi.org/10.1126/science.1094301

    Article  CAS  PubMed  Google Scholar 

  45. Witherspoon JW, Meilleur KG (2016) Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol Commun 4:121. https://doi.org/10.1186/s40478-016-0392-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX et al (2015) Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep 5:11427. https://doi.org/10.1038/srep11427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F et al (2015) Structure of a mammalian ryanodine receptor. Nature 517:44–49. https://doi.org/10.1038/nature13950

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by an RYR1 Foundation Research Grant to AK and by the National Institutes of Health, National Institute of Nursing Research, and Division of Intramural Research. The authors acknowledge the National Disease Research Interchange (NDRI) for supplying control skeletal muscle tissue. This work was also supported by grants from the NIH to ARM (T32HL120826, R01HL145473, R01DK118240, R01HL142903, R01HL061503, R01HL140934, R01AR070194, R25NS076445). This was also supported by a grant from the NIH UL1TR001873 to OC and AK.

Author information

Authors and Affiliations

Authors

Contributions

AK, JJT, JWW, QY: conducted experiments, conceptualization, data analyses, writing. SR, HL, BW, ZM, KW, AW, MSR, ICC, MOS, AM, CG, MT, KT, MH, SR, NK, NCV, AG: conducted experiments, OBC Methodology. ARM, KGM: conceptualization, data analyses, writing the paper, project administration, supervision.

Corresponding authors

Correspondence to Katherine G. Meilleur or Andrew R. Marks.

Ethics declarations

Conflict of interest

Columbia University and ARM own stock in ARMGO, Inc. a company developing compounds targeting RyR and have patents on Rycals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushnir, A., Todd, J.J., Witherspoon, J.W. et al. Intracellular calcium leak as a therapeutic target for RYR1-related myopathies. Acta Neuropathol 139, 1089–1104 (2020). https://doi.org/10.1007/s00401-020-02150-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02150-w

Keywords

Navigation