Skip to main content
Log in

Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Myotubular myopathy and centronuclear myopathies (CNM) are congenital myopathies characterized by generalized muscle weakness and mislocalization of muscle fiber nuclei. Genetically distinct forms exist, and mutations in BIN1 were recently identified in autosomal recessive cases (ARCNM). Amphiphysins have been implicated in membrane remodeling in brain and skeletal muscle. Our objective was to decipher the pathogenetic mechanisms underlying different forms of CNM, with a focus on ARCNM cases. In this study, we compare the histopathological features from patients with X-linked, autosomal recessive, and dominant forms, respectively, mutated in myotubularin (MTM1), amphiphysin 2 (BIN1), and dynamin 2 (DNM2). We further characterize the ultrastructural defects in ARCNM muscles. We demonstrate that the two BIN1 isoforms expressed in skeletal muscle possess the phosphoinositide-binding domain and are specifically targeted to the triads close to the DHPR–RYR1 complex. Cardiac isoforms do not contain this domain, suggesting that splicing of BIN1 regulates its specific function in skeletal muscle. Immunofluorescence analyses of muscles from patients with BIN1 mutations reveal aberrations of BIN1 localization and triad organization. These defects are also observed in X-linked and autosomal dominant forms of CNM and in Mtm1 knockout mice. In addition to previously reported implications of BIN1 in cancer as a tumor suppressor, these findings sustain an important role for BIN1 skeletal muscle isoforms in membrane remodeling and organization of the excitation–contraction machinery. We propose that aberrant BIN1 localization and defects in triad structure are part of a common pathogenetic mechanism shared between the three forms of centronuclear myopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADCNM:

Autosomal dominant centronuclear myopathy

ARCNM:

Autosomal recessive centronuclear myopathy

BAR:

Bin/Amphiphysin/Rvs167

CNM:

Centronuclear myopathy

KO:

Knockout

NADH-TR:

Nicotinamide adenine dinucleotide tetrazolium reductase

OMIM:

Online mendelian inheritance in man

PIs:

Phosphoinositides

SR:

Sarcoplasmic reticulum

XLMTM:

X-linked myotubular myopathy

References

  1. Al-Qusairi L, Weiss N, Toussaint A et al (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA 106:18763–18768

    Article  CAS  PubMed  Google Scholar 

  2. Bevilacqua JA, Bitoun M, Biancalana V et al (2009) “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol 117:283–291

    Article  PubMed  Google Scholar 

  3. Bitoun M, Bevilacqua JA, Prudhon B et al (2007) Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 62:666–670

    Article  CAS  PubMed  Google Scholar 

  4. Bitoun M, Maugenre S, Jeannet PY et al (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209

    Article  CAS  PubMed  Google Scholar 

  5. Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223–2229

    CAS  PubMed  Google Scholar 

  6. Buj-Bello A, Laugel V, Messaddeq N et al (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA 99:15060–15065

    Article  CAS  PubMed  Google Scholar 

  7. Butler MH, David C, Ochoa GC et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367

    Article  CAS  PubMed  Google Scholar 

  8. Carson FL (1997) Histotechnology. ASCP press, Chicago

    Google Scholar 

  9. Claeys KG, Maisonobe T, Bohm J et al (2010) Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology 74:519–521

    Article  CAS  PubMed  Google Scholar 

  10. Denic V, Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130:663–677

    Article  CAS  PubMed  Google Scholar 

  11. Dowling JJ, Vreede AP, Low SE et al (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    Article  PubMed  Google Scholar 

  12. Elliott K, Sakamuro D, Basu A et al (1999) Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 18:3564–3573

    Article  CAS  PubMed  Google Scholar 

  13. Engel AG, Franzini-Armstrong C (2004) Myology, basic and clinical. McGraw-Hill, New York

    Google Scholar 

  14. Fernando P, Sandoz JS, Ding W et al (2009) Bin1 SRC homology 3 domain acts as a scaffold for myofiber sarcomere assembly. J Biol Chem 284:27674–27686

    Article  CAS  PubMed  Google Scholar 

  15. Flucher BE, Andrews SB, Daniels MP (1994) Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Mol Biol Cell 5:1105–1118

    CAS  PubMed  Google Scholar 

  16. Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196

    Article  CAS  PubMed  Google Scholar 

  17. Hong TT, Smyth JW, Gao D et al (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312

    Article  PubMed  Google Scholar 

  18. Jeannet PY, Bassez G, Eymard B et al (2004) Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 62:1484–1490

    PubMed  Google Scholar 

  19. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  20. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    Article  PubMed  Google Scholar 

  21. Kojima C, Hashimoto A, Yabuta I et al (2004) Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J 23:4413–4422

    Article  CAS  PubMed  Google Scholar 

  22. Laporte J, Biancalana V, Tanner SM et al (2000) MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 15:393–409

    Article  CAS  PubMed  Google Scholar 

  23. Laporte J, Hu LJ, Kretz C et al (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    Article  CAS  PubMed  Google Scholar 

  24. Lee E, Marcucci M, Daniell L et al (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196

    Article  CAS  PubMed  Google Scholar 

  25. Leprince C, Romero F, Cussac D et al (1997) A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J Biol Chem 272:15101–15105

    Article  CAS  PubMed  Google Scholar 

  26. Luna LG (1992) Histopathological methods and color atlas of special stains and tissue artifacts. Johnson Printers, Downers Grove

    Google Scholar 

  27. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  CAS  PubMed  Google Scholar 

  28. Muller AJ, Baker JF, DuHadaway JB et al (2003) Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol 23:4295–4306

    Article  CAS  PubMed  Google Scholar 

  29. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2004) Targeted deletion of the suppressor gene bin1/amphiphysin2 accentuates the neoplastic character of transformed mouse fibroblasts. Cancer Biol Ther 3:1236–1242

    Article  CAS  PubMed  Google Scholar 

  30. Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9:1240–1249

    Article  CAS  PubMed  Google Scholar 

  31. Nicot AS, Toussaint A, Tosch V et al (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139

    Article  CAS  PubMed  Google Scholar 

  32. North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18:433–442

    Article  PubMed  Google Scholar 

  33. Pelé M, Tiret L, Kessler JL, Blot S, Panthier JJ (2005) SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet 14:1417–1427

    Article  PubMed  Google Scholar 

  34. Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH (2005) X-linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol 64:555–564

    CAS  PubMed  Google Scholar 

  35. Prendergast GCMAJ, Ramalingam A, Chang MY (2009) Bar the door: cancer suppression by amphiphysin-like genes. Biochem Biophys Acta 1795:25–36

    CAS  PubMed  Google Scholar 

  36. Ramjaun AR, McPherson PS (1998) Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem 70:2369–2376

    Article  CAS  PubMed  Google Scholar 

  37. Razzaq A, Robinson IM, McMahon HT et al (2001) Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev 15:2967–2979

    Article  CAS  PubMed  Google Scholar 

  38. Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL (2006) The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 70:37–120

    Article  CAS  PubMed  Google Scholar 

  39. Rezniczek GA, Konieczny P, Nikolic B et al (2007) Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 176:965–977

    Article  CAS  PubMed  Google Scholar 

  40. Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromuscul Disord 20:223–228

    Article  PubMed  Google Scholar 

  41. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77

    Article  CAS  PubMed  Google Scholar 

  42. Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432

    Article  CAS  PubMed  Google Scholar 

  43. Taylor GS, Maehama T, Dixon JE (2000) Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA 97:8910–8915

    Article  CAS  PubMed  Google Scholar 

  44. Tiret L, Blot S, Kessler JL, Gaillot H, Breen M, Panthier JJ (2003) The cnm locus, a canine homologue of human autosomal forms of centronuclear myopathy, maps to chromosome 2. Hum Genet 113:297–306

    Article  CAS  PubMed  Google Scholar 

  45. Tosch V, Vasli N, Kretz C et al (2010) Novel molecular diagnostic approaches for X-linked centronuclear (myotubular) myopathy reveal intronic mutations. Neuromuscul Disord 20:375–381

    Article  PubMed  Google Scholar 

  46. Tronchere H, Laporte J, Pendaries C et al (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312

    Article  CAS  PubMed  Google Scholar 

  47. Tsai TC, Horinouchi H, Noguchi S et al (2005) Characterization of MTM1 mutations in 31 Japanese families with myotubular myopathy, including a patient carrying 240 kb deletion in Xq28 without male hypogenitalism. Neuromuscul Disord 15:245–252

    Article  PubMed  Google Scholar 

  48. Unsworth KE, Mazurkiewicz P, Senf F et al (2007) Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell Microbiol 9:438–449

    Article  CAS  PubMed  Google Scholar 

  49. Wechsler-Reya RJ, Elliott KJ, Prendergast GC (1998) A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Mol Cell Biol 18:566–575

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christine Kretz and the IGBMC imaging center for technical assistance. This work was supported by grants from Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Collège de France, Association Française contre les Myopathies (AFM), Fondation Recherche Médicale (FRM DEQ20071210538), Agence Nationale de la Recherche (ANR-06-MRAR 023, ANR-07-BLAN-0065-03, ANR-08-GENOPAT-005), and the E-rare program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Laporte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toussaint, A., Cowling, B.S., Hnia, K. et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 121, 253–266 (2011). https://doi.org/10.1007/s00401-010-0754-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0754-2

Keywords

Navigation