Skip to main content
Log in

Image integration in electroanatomic mapping

Bildintegration beim elektrophysiologischen Mapping

  • CONTRIBUTION TO THE MAIN TOPIC
  • Published:
Herzschrittmachertherapie & Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Während der letzten fünf Jahre hat die Integration von Kernspintomographie (MRI) und Computertomographie (CT) komplexe, anatomische Ablationsverfahren deutlich erleichtert. Es erlaubte eine detail-genauere Darstellung der individuellen Herzanatomie, nachdem die MRIs und CTs segmentiert und anschliessend registriert wurden. Klinische Studien haben die Anwendbarkeit dieser Verfahren für die Ablation von Vorhofflimmern deutlich gemacht. Eine exakte Registrierung kann allerdings technisch schwierig sein und verschiedene Algorithmen benötigen. Die Integration der genauen Anatomie eröffnet jedoch die Möglichkeit einer sichereren und effizienteren Ablationsstrategie für Vorhofflimmern und ventrikulären „Reentry“-tachycardien. Neue Entwicklungen wie die Integration von pathophysiologischen Informationen oder Echt-Zeit-Komponenten werden in der Zukunft neue und genauere Behandlungsmethoden ermöglichen.

Abstract

Over the past five years, integration of the pre-procedural MR/CT images with a 3D electroanatomic mapping system has been developed to facilitate catheter ablation of clinical arrhythmias. It presents a significant advantage over the less-detailed surrogate geometry created by the 3D mapping systems. The process of image integration consists of pre-procedural imaging, image segmentation and image registration. Clinical studies have demonstrated the feasibility and accuracy of the use of image integration to guide catheter ablation of atrial fibrillation (AF). Accurate registration of the 3D left atrial MR/CT image to the real-time catheter mapping space can be technically challenging. Several important considerations should be taken into account to minimize registration error. Enhanced ability of catheter navigation with image integration may improve the efficacy and safety of anatomically based ablation strategies such as ablations of AF and nonidiopathic ventricular tachycardia. New developments in the field include integration of pathophysiologic as well as real-time anatomic information to the 3D mapping systems, and the use of new navigation system to improve registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dickfeld T, Calkins H, Zviman M et al (2003) Anatomic stereotactic catheter ablation on three-dimensional magnetic resonance images in real time. Circulation 108:2407–2413

    Article  PubMed  Google Scholar 

  2. Reddy VY, Malchano ZJ, Holmvang G et al (2004) Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: feasibility in a porcine model of healed myocardial infarction. J Am Coll Cardiol 44:2202–2213

    Article  PubMed  Google Scholar 

  3. Sra J, Krum D, Hare J et al (2005) Feasibility and validation of registration of three-dimensional left atrial models derived from computed tomography with a noncontact cardiac mapping system. Heart Rhythm 2:55–63

    Article  PubMed  Google Scholar 

  4. Dong J, Calkins H, Solomon SB et al (2006) Integrated electroanatomic mapping with three-dimensional computed tomographic images for realtime guided ablations. Circulation 113:186–194

    Article  PubMed  Google Scholar 

  5. Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME (1996) Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med 2:1393–1395

    Article  PubMed  CAS  Google Scholar 

  6. Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H (1996) In vivo accuracy testing and clinical experience with the ISG Viewing Wand. Neurosurgery 39:194-202; discussion 202–204

    Article  PubMed  CAS  Google Scholar 

  7. Solomon SB, Dickfeld T, Calkins H (2003) Real-time cardiac catheter navigation on three-dimensional CT images. J Interv Card Electrophysiol 8:27–36

    Article  PubMed  Google Scholar 

  8. Dickfeld T, Calkins H, Zviman M et al (2004) Stereotactic magnetic resonance guidance for anatomically targeted ablations of the fossa ovalis and the left atrium. J Interv Card Electrophysiol 11:105–115

    Article  PubMed  Google Scholar 

  9. Dickfeld T, Calkins H, Bradley D, Solomon SB (2005) Stereotactic catheter navigation using magnetic resonance image integration in the human heart. Heart Rhythm 2:413–415

    Article  PubMed  Google Scholar 

  10. Noseworthy PA, Malchano ZJ, Ahmed J, Holmvang G, Ruskin JN, Reddy VY (2005) The impact of respiration on left atrial and pulmonary venous anatomy: implications for imageguided intervention. Heart Rhythm 2:1173–1178

    Article  PubMed  Google Scholar 

  11. Malchano ZJ, Neuzil P, Cury RC et al (2006) Integration of cardiac CT/MR imaging with three-dimensional electroanatomical mapping to guide catheter manipulation in the left atrium: implications for catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:1221–1229

    Article  PubMed  Google Scholar 

  12. Dong J, Dickfeld T, Dalal D et al (2006) Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:459–466

    Article  PubMed  Google Scholar 

  13. Saad EB, Marrouche NF, Saad CP et al (2003) Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med 138:634–638

    PubMed  Google Scholar 

  14. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH (1999) Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 10:1525–1533

    Article  PubMed  CAS  Google Scholar 

  15. Kato R, Lickfett L, Meininger G et al (2003) Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 107:2004–2010

    Article  PubMed  Google Scholar 

  16. Pappone C, Oral H, Santinelli V et al (2004) Atrio-esophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. Circulation 109:2724–2726

    Article  PubMed  Google Scholar 

  17. Lemola K, Sneider M, Desjardins B et al (2004) Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation 110:3655–3660

    Article  PubMed  Google Scholar 

  18. Kottkamp H, Piorkowski C, Tanner H et al (2005) Topographic variability of the esophageal left atrial relation influencing ablation lines in patients with atrial fibrillation. J Cardiovasc Electrophysiol 16:146–150

    Article  PubMed  Google Scholar 

  19. Tops LF, Bax JJ, Zeppenfeld K et al (2005) Fusion of multislice computed tomography imaging with three-dimensional electroanatomic mapping to guide radiofrequency catheter ablation procedures. Heart Rhythm 2:1076–1081

    Article  PubMed  Google Scholar 

  20. Kistler PM, Earley MJ, Harris S et al (2006) Validation of three-dimensional cardiac image integration: use of integrated CT image into electroanatomic mapping system to perform catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:341–348

    Article  PubMed  Google Scholar 

  21. Kistler PM, Rajappan K, Jahngir M et al (2006) The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17:1093–1101

    Article  PubMed  Google Scholar 

  22. Vasamreddy CR, Jayam V, Lickfett L et al (2004) Technique and results of pulmonary vein angiography in patients undergoing catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 15:21–26

    Article  PubMed  Google Scholar 

  23. Heist EK, Chevalier J, Holmvang G et al (2006) Factors affecting error in integration of electroanatomic mapping with CT and MR imaging during catheter ablation of atrial fibrillation. J Interv Card Electrophysiol 17:21–27

    Article  PubMed  Google Scholar 

  24. Martinek M, Nesser HJ, Aichinger J, Boehm G, Purerfellner H (2006) Accuracy of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping for real-time guided radiofrequency ablation of left atrial fibrillation-Influence of heart rhythm and radiofrequency lesions. J Interv Card Electrophysiol 17:85–92

    Article  PubMed  Google Scholar 

  25. Fahmy TS, Mlcochova H, Wazni OM et al (2007) Intracardiac echo-guided image integration: optimizing strategies for registration. J Cardiovasc Electrophysiol 18:276–282

    Article  PubMed  Google Scholar 

  26. Klemm HU, Steven D, Johnsen C et al (2007) Catheter motion during atrial ablation due to the beating heart and respiration: Impact on accuracy and spatial referencing in three-dimensional mapping. Heart Rhythm 4:587–592

    Article  PubMed  Google Scholar 

  27. Dong J, Dalal D, Scherr D et al. Impact of heart rhythm status on registration accuracy of the left atrium for catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol (in press)

  28. Pflaumer A, Deisenhofer I, Hausleiter J, Zrenner B (2006) Mapping and ablation of atypical flutter in congenital heart disease with a novel three-dimensional mapping system (Carto Merge). Europace 8:138–139

    Article  PubMed  Google Scholar 

  29. Dickfeld T, Lei P, Jeudy J et al (2007) Integration of three-dimensional scar maps to guide ventricular tachycardia ablation using positron emission tomography/computed tomography (PET/CT). Heart Rhythm 4:S104–105

    Article  Google Scholar 

  30. Okumura Y, Johnson S, Packer D (2007) Quantitative validation of realtime, three-dimensional ultrasound image-based mapping and intervention. Heart Rhythm 4:S344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dong MD, PhD.

Additional information

Drs Dong and Dickfeld are consultants of and received research grants from Biosense Webster Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, J., Dickfeld, T. Image integration in electroanatomic mapping. Herzschr. Elektrophys. 18, 122–130 (2007). https://doi.org/10.1007/s00399-007-0571-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-007-0571-z

Schlüsselwörter

Key words

Navigation