Skip to main content
Log in

Bildgebung bei Transkatheter-Aortenklappenimplantation

Bedeutung für das Verfahren und Ausblick auf Transkatheter-Mitralklappenimplantation

Imaging of transcatheter aortic valve implantation

Importance for the procedure and outlook on transcatheter mitral valve implantation

  • Übersichten
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Durch das Fehlen der direkten intraoperativen Sicht auf die Aortenklappe ist die „Transkatheter-Aortenklappenimplantation“ (TAVI) maßgeblich von der standardisierten und präzisen Bildgebung abhängig. Die Echokardiographie dient der eigentlichen Diagnosestellung der Aortenklappenstenose. Zur präoperativen Planung ist die Computertomographie (CT) des Herzens und der gesamten Aorta das standardmäßige Verfahren, mit dem sich alle TAVI-relevanten Informationen gewinnen lassen. Das CT ermöglicht die Bestimmungen des Anulusdurchmessers sowie der Abstände der Koronarostien zum Anulus und gibt Aufschluss über Verkalkungen der Aortenwurzel, einschließlich der Aortenklappe. Für die Planung des Zugangsweges werden im CT Femoral- und Iliakalgefäße beurteilt. Stenosen, Durchmesser und Kinking müssen berücksichtigt werden, um eine transfemorale TAVI zu planen. Die TAVI-Bildgebung hat sich in den letzten Jahren stark weiterentwickelt, v. a. in Bezug auf Software, die eine teilautomatisierte TAVI-spezifische Analyse von CT-Daten ermöglicht. Am weitesten verbreitet ist die Software 3mensio™ Structural Heart. Ebenfalls im klinischen Einsatz befinden sich HeartNavigator™ und syngo Aortic Valve Guidance™. 3mensio ist unabhängig vom Angiographiesystem und bietet Analysen von Aortenwurzel und Aorta bis in die Femoralarterien. Die beiden anderen Systeme sind mit der Angiographieanlage desselben Herstellers gekoppelt und erlauben die direkte Interaktion (z. B. Overlay). Für die Mitralklappe werden die ersten kathetergestützten Prothesen in Zulassungsstudien untersucht; auch hier ist die Bildgebung von enormer Bedeutung, v. a., da die Anatomie der Mitralklappe deutlich komplexer ist als die der Aortenklappe.

Abstract

Transcatheter aortic valve implantation (TAVI) is a closed chest procedure without a direct intraoperative view of the aortic valve. Therefore, standardized and precise imaging is mandatory. Echocardiography is used for the actual diagnosis of the aortic valve stenosis. The standard imaging technique for TAVI planning is computed tomography (CT) of the heart and the complete aorta down to the femoral arteries. This provides all relevant anatomical information for TAVI procedures. The CT enables determination of the diameter of the annulus, the distance between the coronary ostia and the annulus and gives information about the aortic root and annular calcification. The diameter of the femoral and iliac arteries, stenosis and kinking are assessed in CT and are relevant parameters for planning of the transfemoral access. Imaging in TAVI has progressed rapidly in recent years, especially in terms of semi-automatic TAVI-specific software tools for CT scan analysis. The most commonly used tool is 3mensio™ Structural Heart. Furthermore, HeartNavigator™ and syngo Aortic Valve Guidance™ are also commercially available. The 3mensio is independent of the angiography system used and enables analysis of the aortic root and aorta as far as the femoral arteries. The other software tools are linked to the corresponding angiography systems of the same manufacturer and provide direct interaction (e. g. overlay). First clinical approval trials for transcatheter mitral valve implantation are ongoing and imaging for these procedures is even more important due to the complex anatomy of the mitral valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Apfaltrer P, Schymik G, Reimer P et al (2012) Aortoiliac CT angiography for planning transcutaneous aortic valve implantation: Aortic root anatomy and frequency of clinically significant incidental findings. Am J Roentgenol 198:939–945. https://doi.org/10.2214/AJR.11.7231

    Article  Google Scholar 

  2. Badiani S, Bhattacharyya S, Lloyd G (2016) Role of Echocardiography Before Transcatheter Aortic Valve Implantation (TAVI). Curr Cardiol Rep. https://doi.org/10.1007/s11886-016-0715-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartorelli AL, Andreini D, Sisillo E et al (2010) Left Main Coronary Artery Occlusion After Percutaneous Aortic Valve Implantation. Ann Thorac Surg 89:953–955. https://doi.org/10.1016/j.athoracsur.2009.08.024

    Article  PubMed  Google Scholar 

  4. Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2786. https://doi.org/10.1093/eurheartj/ehx391

    Article  PubMed  Google Scholar 

  5. Binder RK, Webb JG, Willson AB et al (2013) The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J Am Coll Cardiol 62:431–438. https://doi.org/10.1016/j.jacc.2013.04.036

    Article  PubMed  Google Scholar 

  6. Blanke P, Naoum C, Webb J et al (2015) Multimodality imaging in the context of transcatheter mitral valve replacement establishing consensus among modalities and disciplines. Jacc Cardiovasc Imaging 8:1192–1208. https://doi.org/10.1016/j.jcmg.2015.08.004

    Article  Google Scholar 

  7. Clavel M‑A, Pibarot P, Messika-Zeitoun D, Capoulade R, Malouf J, Aggarval S, Araoz PA, Michelena HI, Cueff C, Larose E, Miller D, Vahanian A, Enriquez-Sarano M (2014) Impact of Aortic Valve Calcification, as Measured by MDCT, on Survival in Patients With Aortic Stenosis: Results of an International Registry Study. J Am Coll Cardiol 64:1202–1213. https://doi.org/10.1016/j.jacc.2014.05.066.Impact

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clavel MA, Messika-Zeitoun D, Pibarot P et al (2013) The complex nature of discordant severe calcified aortic valve disease grading: New insights from combined Doppler echocardiographic and computed tomographic study. J Am Coll Cardiol 62:2329–2338. https://doi.org/10.1016/j.jacc.2013.08.1621

    Article  CAS  PubMed  Google Scholar 

  9. Crimi G, Passerone G, Rubartelli P (2011) Trans-apical aortic valve implantation complicated by left main occlusion. Catheter Cardiovasc Interv 78:656–659. https://doi.org/10.1002/ccd.23026

    Article  PubMed  Google Scholar 

  10. Eker A, Sozzi FB, Civaia F, Bourlon F (2012) Aortic annulus rupture during transcatheter aortic valve implantation: safe aortic root replacement. Eur J Cardiothorac Surg. https://doi.org/10.1093/ejcts/ezr146

    Article  PubMed  Google Scholar 

  11. Kempfert J, Noettling A, John M et al (2011) Automatically segmented DynaCT: enhanced imaging during transcatheter aortic valve implantation. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2011.05.065

    Article  PubMed  Google Scholar 

  12. Kempfert J, Van Linden A, Lehmkuhl L et al (2012) Aortic annulus sizing: Echocardiographic versus computed tomography derived measurements in comparison with direct surgical sizing. Eur J Cardio-thoracic Surg 42:627–633

    Article  Google Scholar 

  13. Kenny C, Monaghan M (2015) How to assess aortic annular size before transcatheter aortic valve implantation (TAVI) : The role of echocardiography compared with other imaging modalities. Heart 101:727–736. https://doi.org/10.1136/heartjnl-2013-304689

    Article  PubMed  Google Scholar 

  14. Kim W‑K, Renker M, Rolf A et al (2018) Accuracy of device landing zone calcium volume measurement with contrast-enhanced multidetector computed tomography. Int J Cardiol 263:171–176. https://doi.org/10.1016/J.IJCARD.2018.02.042

    Article  PubMed  Google Scholar 

  15. Kliger C, Jelnin V, Sharma S et al (2014) CT angiography-fluoroscopy fusion imaging for percutaneous transapical access. Jacc Cardiovasc Imaging 7:169–177. https://doi.org/10.1016/j.jcmg.2013.10.009

    Article  PubMed  Google Scholar 

  16. Van Linden A, Kempfert J, Nollert G, Walther T (2012) Examining the use of imaging during T‑AVI: Focus on online 3D DynaCT. Interv Cardiol 4:361–370

    Article  Google Scholar 

  17. Martín M, Luyando LH, de la Hera JM et al (2014) The importance of echocardiography in Transcatheter Aortic Valve Implantation. Echocardiography 31:911–911. https://doi.org/10.1111/echo.12633

    Article  PubMed  Google Scholar 

  18. Mesa Rubio D, Suarez de Lezo Cruz Conde J, Alvarez-Osorio MP et al (2011) Measurement of aortic valve annulus using different cardiac imaging techniques in transcatheter aortic valve implantation: agreement with finally implanted prosthesis size. Echocardiography 28:388–396. https://doi.org/10.1111/j.1540-8175.2010.01353.x

    Article  PubMed  Google Scholar 

  19. Pasic M, Buz S, Dreysse S et al (2010) Transapical aortic valve implantation in 194 patients: problems, complications, and solutions. Ann Thorac Surg 90:1463–1470. https://doi.org/10.1016/j.athoracsur.2010.05.072

    Article  PubMed  Google Scholar 

  20. de Vaan J, Verstraeten L, de Jaegere P, Schultz C (2012) The 3mensio Valves multimodality workstation. EuroIntervention 7:1464–1469. https://doi.org/10.4244/EIJV7I12A228

    Article  PubMed  Google Scholar 

  21. Walther T, Dewey T, Borger MA et al (2009) Transapical aortic valve implantation: step by step. Ann Thorac Surg 87:276–283

    Article  Google Scholar 

  22. Winther S, Christiansen EH, Thuesen L (2011) Stenting of acute left main coronary artery occlusion using balloon anchoring technique after transcatheter aortic valve implantation. J Interv Cardiol 24:470–473. https://doi.org/10.1111/j.1540-8183.2011.00636.x

    Article  PubMed  Google Scholar 

  23. Wuest W, Anders K, Schuhbaeck A et al (2012) Dual source multidetector CT-angiography before Transcatheter Aortic Valve Implantation (TAVI) using a high-pitch spiral acquisition mode. Eur Radiol 22:51–58. https://doi.org/10.1007/s00330-011-2233-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Van Linden.

Ethics declarations

Interessenkonflikt

A. Van Linden ist als Berater für Siemens Healthineers tätig. T. Walther gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Linden, A., Walther, T. Bildgebung bei Transkatheter-Aortenklappenimplantation. Z Herz- Thorax- Gefäßchir 33, 231–238 (2019). https://doi.org/10.1007/s00398-018-0293-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-018-0293-z

Schlüsselwörter

Keywords

Navigation