Skip to main content
Log in

Obtaining test-independent values of the dynamic and static yield stresses for time-dependent materials

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

When it comes to the measurement of yield stress, the experimental procedure appears to play a significant role. Using a series of experiments, in which the effects of time dependence and shear banding were identified and taken into account, we determined the dynamic and static yield stresses of the materials as unique, test-independent properties. We studied the shear rheological properties of an aqueous suspension of Laponite®, which is a highly time-dependent (thixotropic) material. To minimize the irreversible effect of aging on its material properties, the Laponite® dispersion was aged for 347 days under a controlled environment. For comparison, an aqueous solution of Carbopol®—a slightly time-dependent material—was also investigated. The peak values of the shear stress evolution in constant shear rate tests were compared with the static and dynamic yield stress values. We noticed that, as the shear rate is reduced the peak stress value tends asymptotically to the dynamic yield stress for the slightly time-dependent material, but to slightly above the static yield stress for the thixotropic material. For the Laponite® suspension, at relatively low shear rates, we observed that peak stresses are influenced by shear banding. By simulating stress evolution curves using stress step-changes, we eliminated the influence of shear banding and discovered that the lowest yielding point coincides with the static yield stress. In addition, we provided the complete flow curve for the Laponite® suspension, showing the role of the static and dynamic yield stresses, and the unattainable zone which is closely related to steady shear banding effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. We deem “yield strength” more appropriate than “yield stress,” because we are talking about the microstructure resistance, a property of the material, whereas “stress” suggests an external force per unit area imposed to the material. However, the expression “yield stress” is widely employed in the literature on yield strength materials and, for this reason, we kept the usual terminology.

References

  • Abedi B, Mendes R, de Souza Mendes PR (2019) Startup flow of yield-stress non-thixotropic and thixotropic materials in a tube. J Petrol Sci Eng 174:437–445

    CAS  Google Scholar 

  • Abou B, Bonn D, Meunier J (2003) Nonlinear rheology of laponite suspensions under an external drive. J Rheol 47(4):979–988

    CAS  Google Scholar 

  • Baudez JC, Chabot F, Coussot P (2002) Rheological interpretation of the slump test. Applied Rheology 12(3):133–141

    Google Scholar 

  • Bonn D, Tanase S, Abou B et al (2002) Laponite: aging and shear rejuvenation of a colloidal glass. Phys Rev Lett 89(1):015701

    Google Scholar 

  • Bonn D, Denn MM, Berthier L et al (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89:035005

    Google Scholar 

  • Bonnecaze RT, Cloitre M (2010) Micromechanics of soft particle glasses. High Solid Dispersions pp 117–161

  • Caton F, Baravian C (2008) Plastic behavior of some yield stress fluids: from creep to long-time yield. Rheol Acta 47(5–6):601–607

    CAS  Google Scholar 

  • Choi J, Rogers SA (2020) Optimal conditions for pre-shearing thixotropic or aging soft materials. Rheol Acta 59:921–934

    CAS  Google Scholar 

  • Corporation TLTRT (2007) Molecular weight of carbopol and pemulen polymers. The Lubrizol Corporation, Wickliffe, OH, USA

    Google Scholar 

  • Corporation TLTRT (2007) Dispersion techniques for carbopol polymers. The Lubrizol Corporation, Wickliffe, OH, USA

    Google Scholar 

  • Corporation TLTRT (2009) Neutralizing carbopol and pemulen polymers in aqueous and hydroalcoholic systems. The Lubrizol Corporation, Wickliffe, OH, USA

    Google Scholar 

  • Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newtonian Fluid Mech 211:31–49

    CAS  Google Scholar 

  • Coussot P, Boyer S (1995) Determination of yield stress fluid behaviour from inclined plane test. Rheol Acta 34(6):534–543

    CAS  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT et al (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheology 46(3):573–589

  • Coussot P, Tabuteau H, Chateau X et al (2006) Aging and solid or liquid behavior in pastes. J Rheol 50(6):975–994

  • Coussot P, Tabuteau H, Chateau X, et al (2006) Aging and solid or liquid behavior in pastes. Journal of Rheology 50(6):975–994

  • Cummins HZ (2007) Liquid, glass, gel: the phases of colloidal laponite. J Non-Cryst Solids 353(41–43):3891–3905

    CAS  Google Scholar 

  • de Souza Mendes PR, Thompson RL (2013) A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent-yield-stress fluids. Rheol Acta 52(7):673–694

    Google Scholar 

  • de Souza Mendes PR, Thompson RL (2019) Time-dependent yield stress materials. Current Opinion in Colloid & Interface Science 43:15–25

    Google Scholar 

  • de Souza Mendes PR, Thompson RL, Alicke AA et al (2014) The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter. J Rheol 58(2):537–561

    Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54(5):1137–1154

    CAS  Google Scholar 

  • Di Giuseppe E, Corbi F, Funiciello F et al (2015) Characterization of carbopol® hydrogel rheology for experimental tectonics and geodynamics. Tectonophysics 642:29–45

    Google Scholar 

  • Dinkgreve M, Paredes J, Denn MM et al (2016) On different ways of measuring the yield stress. J Non-Newtonian Fluid Mech 238:233–241

    CAS  Google Scholar 

  • Divoux T, Tamarii D, Barentin C et al (2010) Transient shear banding in a simple yield stress fluid. Phys Rev Lett 104(20):208301

    Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011) Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry. Soft Matter 7(19):9335

    CAS  Google Scholar 

  • Divoux T, Fardin MA, Manneville S et al (2016) Shear banding of complex fluids. Annu Rev Fluid Mech 48(1):81–103

    Google Scholar 

  • Dzuy NQ, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27(4):321–349

    Google Scholar 

  • Fernandes RR, Andrade DE, Franco AT et al (2017) The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material. J Rheol 61(5):893–903

    CAS  Google Scholar 

  • Figura BD, Prud’homme RK (2010) Hydrating cement pastes: novel rheological measurement techniques of the acceleration of gelation. J Rheol 54(6):1363–1378

    CAS  Google Scholar 

  • Firouznia M, Metzger B, Ovarlez G et al (2018) The interaction of two spherical particles in simple-shear flows of yield stress fluids. J Nonnewton Fluid Mech 255:19–38

    CAS  Google Scholar 

  • Gurung A, Haverkort JW, Drost S et al (2016) Ultrasound image velocimetry for rheological measurements. Meas Sci Technol 27(9):094008

    Google Scholar 

  • Heymann L, Peukert S, Aksel N (2002) Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46(1):93–112

    CAS  Google Scholar 

  • Huang N, Ovarlez G, Bertrand F et al (2005) Flow of wet granular materials. Phys Rev Lett 94(2):028301

    CAS  Google Scholar 

  • Jatav S, Joshi YM (2017) Phase behavior of aqueous suspension of laponite: new insights with microscopic evidence. Langmuir 33(9):2370–2377

    CAS  Google Scholar 

  • Joshi YM, Reddy GRK, Kulkarni AL et al (2008) Rheological behaviour of aqueous suspensions of laponite: new insights into the ageing phenomena. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464(2090):469–489

    CAS  Google Scholar 

  • Callister Jr. WD Rethwisch DG (2007) Materials science and engineering, an introduction. John Wiley & Sons Inc-New York, USA

  • Kee DD (2021) Yield stress measurement techniques: a review. Phys Fluids 33(11):111301

    Google Scholar 

  • Keentok M (1982) The measurement of the yield stress of liquids. Rheol Acta 21(3):325–332

    CAS  Google Scholar 

  • Kumar NR, Muralidhar K, Joshi YM (2008) On the refractive index of ageing dispersions of laponite. Appl Clay Sci 42(1–2):326–330

    Google Scholar 

  • Labanda J, Llorens J (2004) Rheology of laponite colloidal dispersions modified by sodium polyacrylates. Colloids Surf, A 249(1–3):127–129

    CAS  Google Scholar 

  • Labanda J, Llorens J (2005) Influence of sodium polyacrylate on the rheology of aqueous laponite dispersions. J Colloid Interface Sci 289:86–93

    CAS  Google Scholar 

  • Larson RG, Wei Y (2019) A review of thixotropy and its rheological modeling. J Rheol 63(3):477–501

    CAS  Google Scholar 

  • Matsumoto T, Kawai M, Masuda T (1992) Viscoelastic and saxs investigation of fractal structure near the gel point in alginate aqueous systems. Macromolecules 25(20):5430–5433

    CAS  Google Scholar 

  • Meeten GH (2000) Yield stress of structured fluids measured by squeeze flow. Rheol Acta 39(4):399–408

    CAS  Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

    Google Scholar 

  • Moller P, Fall A, Chikkadi V et al (2009) An attempt to categorize yield stress fluid behaviour. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367(1909):5139–5155

    Google Scholar 

  • Mourchid A, Lecolier E, Van Damme H et al (1998) On viscoelastic, birefringent, and swelling properties of laponite clay suspensions: revisited phase diagram. Langmuir 14(17):4718–4723

    CAS  Google Scholar 

  • Nguyen QD, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29(3):335–347

    Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88

    Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24(1):47–88

    Google Scholar 

  • Nguyen QD, Akroyd T, Kee DCD et al (2006) Yield stress measurements in suspensions: an inter-laboratory study. Korea-Australia Rheology Journal 18(1):15–24

    Google Scholar 

  • Ong EES, O’Byrne S, Liow JL (2019) Yield stress measurement of a thixotropic colloid. Rheol Acta 58(6–7):383–401

    CAS  Google Scholar 

  • Ovarlez G, Rodts S, Chateau X et al (2009) Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta 48:831–844

    CAS  Google Scholar 

  • Ovarlez G, Mahaut F, Deboeuf S et al (2015) Flows of suspensions of particles in yield stress fluids. J Rheol 59(6):1449–1486

    CAS  Google Scholar 

  • Pashias N, Boger DV, Summers J et al (1996) A fifty cent rheometer for yield stress measurement. J Rheol 40(6):1179–1189

    CAS  Google Scholar 

  • Piau JM (2007) Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges: meso- and macroscopic properties, constitutive equations and scaling laws. J Nonnewton Fluid Mech 144(1):1–29

    CAS  Google Scholar 

  • Pilavtepe M, Recktenwald S, Schuhmann R, et al (2018) Macro-and microscale structure formation and aging in different arrested states of laponite dispersions. Journal of Rheology 62(2):593–605

  • Pilavtepe M, Recktenwald S, Schuhmann R et al (2018) Macro-and microscale structure formation and aging in different arrested states of laponite dispersions. J Rheol 62(2):593–605

    CAS  Google Scholar 

  • R. Varges PM, M. Costa CS, S. Fonseca B et al (2019) Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids 4(1):3

  • Rabideau BD, Lanos C, Coussot P (2009) An investigation of squeeze flow as a viable technique for determining the yield stress. Rheol Acta 48(5):517–526

    CAS  Google Scholar 

  • Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements: from slump to spreading flow. J Rheol 49(3):705–718

    CAS  Google Scholar 

  • Roussel N, Stefani C, Leroy R (2005) From mini-cone test to abrams cone test: measurement of cement-based materials yield stress using slump tests. Cem Concr Res 35(5):817–822

    CAS  Google Scholar 

  • Shih WH, Shih WY, Kim SI et al (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772–4779

    CAS  Google Scholar 

  • Sikorski D, Tabuteau H, de Bruyn JR (2009) Motion and shape of bubbles rising through a yield-stress fluid. J Nonnewton Fluid Mech 159(1–3):10–16

    CAS  Google Scholar 

  • Stokes J, Telford J (2004) Measuring the yield behaviour of structured fluids. J Nonnewton Fluid Mech 124(1–3):137–146

    CAS  Google Scholar 

  • Suman K, Joshi YM (2018) Microstructure and soft glassy dynamics of an aqueous laponite dispersion. Langmuir 34(44):13079–13103

    CAS  Google Scholar 

  • Tanaka H, Meunier J, Bonn D (2004) Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys Rev E 69(3):031404

    Google Scholar 

  • Tarcha BA, Forte BPP, Soares EJ et al (2015) Critical quantities on the yielding process of waxy crude oils. Rheol Acta 54:479–499

    CAS  Google Scholar 

  • Thompson DW, Butterworth JT (1992) The nature of laponite and its aqueous dispersions. J Colloid Interface Sci 151(1):236–243

    CAS  Google Scholar 

  • Thompson RL, Alicke AA, de Souza Mendes PR (2015) Model-based material functions for saos and laos analyses. J Non-Newtonian Fluid Mech 215:19–30

    CAS  Google Scholar 

  • Thompson RL, Sica LU, de Souza Mendes PR (2018) The yield stress tensor. J Nonnewton Fluid Mech 261:211–219

    CAS  Google Scholar 

  • Uhlherr PH, Guo J, Fang T et al (2002) Static measurement of yield stress using a cylindrical penetrometer. Korea-Australia Rheology Journal 14(1):17–23

    Google Scholar 

  • Varges PR, Costa CM, Fonseca BS, et al (2019) Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions. Fluids 4(3). https://doi.org/10.3390/fluids4010003

  • Wendt EM, Fernandes RR, Galdino JF et al (2021) Experimental evidence of the effect of aging on the yielding and pre-yielding behavior of bentonite and laponite suspensions. J Rheol 65(5):1089–1102

    CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

  • Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17(4):1030–1036

    CAS  Google Scholar 

  • Zhu L, Sun N, Papadopoulos K et al (2001) A slotted plate device for measuring static yield stress. J Rheol 45(5):1105–1122

    CAS  Google Scholar 

  • Zhu L, Papadopoulos KD, Kee DD (2004) Slotted-plate apparatus to measure yield stress of suspensions. Rev Sci Instrum 75(3):737–740

    CAS  Google Scholar 

Download references

Acknowledgements

BA and EPMC thank FAPERJ for the post-doctoral fellowships (E-26/202.044/2020 and E-26/204.593/2021 respectively). RLT thanks CNPq (305023/2022-5) and CAPES (PROEX 23038007615-2021-78) for financial support. PRSM thanks Petrobras S.A. (2022/00183-7), CNPq (307976/2018-1), CAPES (PROEX 0096/2022), and FAPERJ (E-26/010.001241/ 2016 and E-26/201.094/2021) for the financial support to the Rheology Group at PUC-Rio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behbood Abedi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, B., Marín Castaño, E.P., C. Rodrigues, E. et al. Obtaining test-independent values of the dynamic and static yield stresses for time-dependent materials. Rheol Acta 62, 665–685 (2023). https://doi.org/10.1007/s00397-023-01414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-023-01414-y

Keywords

Navigation