Skip to main content
Log in

Influence of pressure on end corrections in capillary rheometry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The research and modeling of the connection of polymer viscosity and the present pressure level have brought forth a variety of, often contradictory, results. While different machinery setups are used resulting in less comparison of the studies, a combined analytical and experimental approach to apply end corrections at correct pressure levels has not been presented yet. In this work, the effect of pressure on end corrections in die flow is assessed with a combination of a pressure chamber and an orifice die, and applied to capillary rheometry measurements at different pressure levels. The pressure dependence of the end corrections has been found to show good correlations with an applied modified Power-Law model. By comparing the results to regular end corrections, the error in computing the viscosity has been found to be largely independent of the shear-rate. Neglecting the influence of pressure on end corrections yields 0–12 % too high viscosities, depending on the average die pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari M, Alabbas A, Hatzikiriakos SG, Mitsoulis E (2010) Entry flow of polyethylene melts in tapered dies. Int Polym Process 25(4):287–296

    Article  Google Scholar 

  • Ansari M, Zisis T, Hatzikiriakos SG, Mitsoulis E (2012) Capillary flow of low-density polyethylene. Polym Eng Sci 52(3):649–662

    Article  Google Scholar 

  • Bagley EB (1956) End corrections in the capillary flow of polyethylene. J Appl Phys 28(5):624–627

    Article  Google Scholar 

  • Barus C (1893) Isothermals, isopiestics and isometrics relative to viscosity. Am J Sci 45:87–96

    Article  Google Scholar 

  • Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts. J Non-Newtonian Fluid Mech 79(2-3):137–155

    Article  Google Scholar 

  • Chakravorty S, Rides M, Allen CRG, Brown CS (1996) Polymer melt viscosity increases under pressure: simple new measurement method. Plastics and Rubber Processing and Applications 25:260–261

    Google Scholar 

  • Eisenschitz R, Rabinowitsch B, Weissenberg K (1929) Zur Analyse des formänderungswiderstandes. Mitteilungen der deutschen materialprüfungsanstalten, Sonderheft IX: Arbeiten aus dem Kaiser-Wilhelm-Institut für Metallforschung und dem Staatlichen Materialprüfungsamt zu Berlin-Dahlem, pp 91–94

    Book  Google Scholar 

  • Hay G, Mackay ME, Awati KM, Park Y (1999) Pressure and temperature effects inside slit rheometry. J Rheol 43:1099–1116

    Article  Google Scholar 

  • Hirai N, Eyring H (1959) Bulk viscosity of polymeric s. J Polym Sci 37:51–70

    Article  Google Scholar 

  • Kadijk SE, Van den Brule BHAA (1994) On the pressure dependency of the viscosity of molten polymers. Polym Eng Sci 34(20):1535–1546

    Article  Google Scholar 

  • Karl VH (1978) Über die druckabhängigkeit der viskoelastischen und physikalisch-chemischen Eigenschaften von Polymeren, 8: Die viskosität von Polyethylen bis 5000 bar. Die Angewandte Molekulare Chemie 79:11–19

    Article  Google Scholar 

  • Laun HM (1983) Polymer melt rheology with a slit die. Rheol Acta 22:171–185

    Article  Google Scholar 

  • Liang J-Z (2001) Pressure effect of viscosity for polymer fluids in die flow. Polymer 42:3709–3712

    Article  Google Scholar 

  • Mackley MR, Hassell DG (2011) The multipass rheometer a review. J Non-Newtonian Fluid Mech 166:421–456

    Article  Google Scholar 

  • Mitsoulis E, Hatzikiriakos S G (2003) Bagley correction: the effect of contraction angle and its prediction. Rheol Acta 42:309–320

    Article  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2(2):210–222

    Article  Google Scholar 

  • Moldenaers P, Vermant J, Mewis J, Heyndrickx I (1996) Origin of nonlinearities in the Bagley plots of thermotropic copolyesters. J Rheol 40:203–219

    Article  Google Scholar 

  • Münstedt H, Schwarzl FR (2014) Deformation and flow of polymeric materials. Springer, Berl. in Heidelberg

    Book  Google Scholar 

  • Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Calleja FJ, Ezquerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42(12):5247–5256

    Article  Google Scholar 

  • Osswald TA, Menges G (2012) Materials science of polymers for engineers 3 rd edition. Carl Hanser, Munich

    Book  Google Scholar 

  • Ostwald W (1929) Ueber die rechnerische Darstellung des Strukturgebietes der Viskositaet. Kolloid-Zeitschrift 47(2):176–187

    Article  Google Scholar 

  • Pogodina NV, Victor PL, Srinivas S, Winter HH (2001) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer 42(21):9031– 9043

    Article  Google Scholar 

  • Rudolph N, Osswald TA (2014) Polymer rheology: fundamentals and applications. Carl Hanser, Munich

    Google Scholar 

  • Tapadia PS, Joshi YM, Lele AK, Mashelkar RA (2000) Influence of stereoregularity on the wall slip phenomenon. Macromolecules 33:250–252

    Article  Google Scholar 

  • VDI e.V. (2013) VDI-Wärmeatlas. 11th edition. Springer Vieweg, Berlin Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Mattner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattner, T., Drummer, D. Influence of pressure on end corrections in capillary rheometry. Rheol Acta 55, 823–832 (2016). https://doi.org/10.1007/s00397-016-0958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0958-z

Keywords

Navigation