Skip to main content
Log in

Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The focus of this paper was to gain a true understanding of the impact of a multifunctional epoxide (Joncryl®;ADR-4368) on the interfacial properties of biopolymer blends based on poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The effect of Joncryl on the shear rheological, morphological, and interfacial properties of the blends was systematically investigated. For the deformed drop retraction experiments, different sandwich model systems (droplet/matrix), representing various scenarios of compatibilization, were prepared, aiming to probe the role of the epoxy-functionalized chains on the interface. The decrease of the interfacial tension in the modified/compatibilized PLA_PBAT and the formation of the PLA-Joncryl-PBAT copolymer were highlighted. A new relaxation peak relative to this copolymer was detected by the relaxation spectrum. Transient start-up shear and nonlinear stress relaxation experiments were carried out and confirmed the obtained results. In addition, the interface contribution was demonstrated using the Lee and Park model. The relaxation time increased with the amount of added Joncryl. Hence, the coexistence of chain extension/branching chains coupled to the PLA-Joncryl-PBAT copolymer formation had to be taken into account to explain the improved mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914

    Article  Google Scholar 

  • Bengoechea C, Puppo M C, Romero A, Cordobès F, Guerrero (2008) Linear ad nonlinear viscoelasticity of emulsions containing carob protein as emulsifier. J Food Eng 87(1):124–135

    Article  Google Scholar 

  • Bousmina M, Muller R (1993) Linear viscoelasticity in the melt of impact PMMA. Influence of concentration and aggregation of dispersed rubber particles. J Rheol 37(4):663–679

    Article  Google Scholar 

  • Bousmina M (1999) Effect of interfacial tension on linear viscoelastic behavior of immiscible polymer blends. Rheol Acta 38(3):251–254

    Article  Google Scholar 

  • Cailloux J, Santana O O, Franco-Urquiza E, Bou J J, Carrasco F, Gamez-Pérez J, Maspoch M L (2013) Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: melt rheology analysis. Express Polym Lett 7(3):304–318

    Article  Google Scholar 

  • Coltelli M-B, Toncelli C, Ciardelli F, Bronco S (2011) Compatible blends of biorelated polyesters through catalytic transesterification in the melt. Polym Degrad Stab 96(5):982–990

    Article  Google Scholar 

  • Corre Y M, Duchet J, Maazouz A, Reignier J (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol Acta 50(7-8):612–629

    Article  Google Scholar 

  • Debruijn R A (1991) Deformation and breakup of drops in simple shear flows, PhD thesis, Eindhoven University of Technology

  • Eslami H, Kamal M R (2013) Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic acid)/poly(butylene succinate-co-adipate) blends. J App Polym Sci 129(5):2418–2428

    Article  Google Scholar 

  • Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, van der Meer R (2008) Society of Plastics Engineers Annual Technical Conference

  • Grace H P (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Eng Commun 14(3–6):225–77

    Article  Google Scholar 

  • Greco F (2002) Drop deformation for non-Newtonian fluids in slow flows. J Non-Newtonian Fluid Mech 107(1-3):111–131

    Article  Google Scholar 

  • Guido S, Simeone M, Greco F (2003) Effects of matrix viscoelasticity on drop deformation in dilute polymer blends under slow shear flow. Polymer 44(2):467–471

    Article  Google Scholar 

  • Hu G H, Li H, Feng L F (2002) A theoretical model for quiescent coarsening in immiscible polymer blends. AIChE J 48(11):2620–2628

    Article  Google Scholar 

  • Hu Y T, Pin D J, Leal L G (2000) Drop deformation, breakup, and coalescence with compatibilizer. Phys Fluids 12(3):484–489

    Article  Google Scholar 

  • Iza M, Bousmina M (2000) Nonlinear rheology of immiscible polymer blends: step strain experiments. J Rheolo 44(6):1363–1384

    Article  Google Scholar 

  • Iza M, Bousmina M, Jerome R (2001) Rheology of compatibilized immiscible viscoelastic polymer blends. Rheol Acta 40(1):10–22

    Article  Google Scholar 

  • Jacobs U, Fahrländer M, Winterhalter J, Friedrich C (1999) Analysis of Palierne’s emulsion model in the case of viscoelastic interfacial properties. J Rheol 43(6):1495–1509

    Article  Google Scholar 

  • Jansen J M H, Meijer H E H (1993) Droplet breakup mechanisms: stepwise equilibrium versus transient dispersion. J Rheol 37(4):597–608

    Article  Google Scholar 

  • Jafari S H, Yavari A, Asadinezhad A, Khonakdar H A, Bohme F (2005) Correlation of morphology and rheological response of interfacially modified PTT/m-LLDPE blends with varying extent of modification. Polymer 46(14):5082–5093

    Article  Google Scholar 

  • Kagarise C, Xu J, Wang Y, Mahboob M, Koelling K W, Bechtel S E (2010) Transient shear rheology of carbon nanofiber/polystyrene melt composites. J Non-Newtonian Fluid Mech 165(3-4):98–109

    Article  Google Scholar 

  • Kumar M, Mohanty S, Nayak S K, Rahail P M (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101(21):8406–8415

    Article  Google Scholar 

  • Lacroix C, Aressy M, Carreau P J (1997) Linear viscoelastic behavior of molten polymer blends: a comparative study of the Palierne and Lee and Park models. Rheol Acta 36(4):416–428

    Article  Google Scholar 

  • Lamnawar K, Maazouz A (2008) Rheology and morphology of multilayer reactive polymers: effect of interfacial area in interdiffusion/reaction phenomena. Rheol Acta 47(4):383–397

    Article  Google Scholar 

  • Lamnawar K, Vion-Loisel F, Maazouz A (2010) Rheological, morphological and heat seal properties of linear low density polyethylene and cyclo-olefine copolymer (LLDPE/COC) blends. J Appl Polym Sci 116(4):2015–2022

    Google Scholar 

  • Li X, Pozrikidis C (1997) The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J Fluid Mech 341(1):165–194

    Article  Google Scholar 

  • Li K, Peng J, Turng L-S, Huang H X (2011) Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios. Adv Polym Tech 30(2):150–157

    Article  Google Scholar 

  • Maffettone P L, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Non-Newtonian Fluid Mech 78(2-3):227–241

    Article  Google Scholar 

  • Mallet B, Lamnawar K, Maazouz A (2014) Improvement of blown film extrusion, of poly(lactic acid): structure-processing-properties relationships. Polym Eng Sci 54(4):840–857

    Article  Google Scholar 

  • Mighri F, Ajji A, Carreau P J (1998) Influence of elastic properties on drop deformation and breakup in shear flow. J Rheol 42(2):1477–1490

    Article  Google Scholar 

  • Okamoto K, Takahashi M, Yamane H, Kashihara H, Watanabe H, Masuda T (1999) Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene/polycarbonate blend melt. J Rheol 43(4):951–966

    Article  Google Scholar 

  • Palierne J F (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29(3):204–214

    Article  Google Scholar 

  • Riemann R E, Cantow H J, Friedrich C (1996) Rheological investigation of form relaxation and interface relaxation processes in polymer blends. Polym Bull 36(5):637–643

    Article  Google Scholar 

  • Rolón-Garrido V H, Wagner M H (2009) The damping function in rheology. Rheol Acta 48(3):245–284

    Article  Google Scholar 

  • Sarazin P, Li G, Orts W J, Davis B D (2007) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49(2):599–609

    Article  Google Scholar 

  • Shi D, Ke Z, Yang J, Gao Y, Wu J, Yin J (2002) Rheology and morphology of reactively compatibilized PP/PA6 blends. Macromol 35(21):8005–8012

    Article  Google Scholar 

  • Shi D, Hu G-H, Ke Z, Li R K Y, Yin J (2006) Relaxation behavior of polymer blends with complex morphologies: Palierne emulsion model for uncompatibilized and compatibilized PP/PA6 blends. Polymer 47(13):4659–4666

    Article  Google Scholar 

  • Silva J M, Machado A V, Moldenaers P, Maia J M (2010a) The role of interfacial elasticity on the rheological behavior of polymer blends. Korean-Australian Rheol J 22(1):21–29

    Google Scholar 

  • Silva J, Machado A V, Moldenaers P, Maia J M (2010b) The effect of interfacial properties on the deformation and relaxation behavior of PMMA/PS blends. J Rheol 54(4):797–813

    Article  Google Scholar 

  • Son Y, Yoon J T (2001) Comparative measurement of interfacial tension by transient dynamic methods. Polymer 42(16):7209–7213

    Article  Google Scholar 

  • Sung Y T, Han M S, Hyun J C, Kim W N, Lee H S (2003) Rheological properties and interfacial tension of polypropylene-poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44(5):1681–1687

    Article  Google Scholar 

  • Takahashi M, Macaubas P H P, Okamoto K, Jinnai H, Nishikawa Y (2007) Stress prediction for polymer blends with various shapes of droplet phase. Polymer 48(8):2371–2379

    Article  Google Scholar 

  • Taheri M, Morshedian J, Khonakdar H A (2011) Effect of compatibilizer on interfacial tension of SAN/EPDM blend as measured via relaxation spectrums calculated from Palierne and Choi–Schowalter models. Polymer Bull 66(3):363–376

    Article  Google Scholar 

  • Van Hemelrijick E, Van Puyvelde P, Velankar S, Macosko C W, Moldenaers P (2004) Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J Rheol 48(1):143–158

    Article  Google Scholar 

  • Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Int Sci 6(5-6):457–463

    Article  Google Scholar 

  • Van Puyvelde P, Velankar S, Mewis J, Moldenaers P (2002) Effect of Marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym Eng Sci 42(10):1956–1964

    Article  Google Scholar 

  • Velankar S, Van Puyvelde P, Mewis J, Moldenaers P (2001) Effect of compatibilization on the breakup of polymeric drops in shear flow. J Rheol 45(4):1007–1019

    Article  Google Scholar 

  • Velankar S, Zhou H, Jeon H K, Macosko W C (2004a) CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops. J Coll Int Sci 272(1):172–185

    Article  Google Scholar 

  • Velankar S, Van Puyvelde P, Mewis J, Moldenaers P (2004b) Steady-shear rheological properties of model compatibilized blends. J Rheol 48(4):725–744

    Article  Google Scholar 

  • Watanabe H, Yao M L, Yamagishi A, Osaki K, Shitata T, Niwa H, Morishima Y (1996) Nonlinear rheological behaviour of a concentrated spherical silica suspension. Rheolo Acta 35(5):433–445

    Article  Google Scholar 

  • Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci Part B Polym Phys 45:3137–3147

    Article  Google Scholar 

  • Xing P, Bousmina M, Rodrigue D (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromol 33(21):8020–8034

    Article  Google Scholar 

  • Yang H S, Nam J G, Kim H S, Lee J W (2002) Interrelationship between interfacial tension and rheological properties of LDPE/PS blends. J Soc Rheol Japan 30(4):187–193

    Article  Google Scholar 

  • Yee M, Souza A M C, Valera T S, Demarquette N R (2009) Stress relaxation behavior of PMMA/PS polymer blends. Rheol Acta 48(5):527–541

    Article  Google Scholar 

  • Blawzdziewicz J, Cristini V, Loewenberg M (1999) Near-contact motion of surfactant-covered spherical drops: ionic surfactant. J Colloid Int Sci 211:355–366

    Article  Google Scholar 

  • Cristini V, Blawzdziewicz J, Loewenberg M (1998) Near-contact motion of surfactant-covered spherical drops. J Fluid Mech 366:259–287

    Article  Google Scholar 

  • Hansen S (2008) Estimation of the relaxation spectrum from dynamic experiments using Bayesian analysis and a new regularization constraint. Rheol Acta 47(2):169–178

    Article  Google Scholar 

  • Huo Y, Groninckx G, Moldenaers P (2007) Rheology and morphology of polystyrene/polypropylene blends with in situ compatibilization. Rheol Acta 46(4):507–520

    Article  Google Scholar 

  • Macosko C W, Guegan P, Khandpur A, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromol 29(17):5590–5596

    Article  Google Scholar 

  • Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32(1):65–73

    Article  Google Scholar 

  • Sundararaj U, Macosko C W (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28(8):2647–2657

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the editor and the reviewers for their attentive reading of our manuscript and the meticulous assessment of this work. Many thanks also to the “DGCIS,” Ministry of Industry, for financial support, to Dr. René Fulchiron for the Linkam device, to Mr. Pierre Alcouffe for the morphological observations, and to Professor J. Maia for the instructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Maazouz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.29 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Itry, R., Lamnawar, K. & Maazouz, A. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta 53, 501–517 (2014). https://doi.org/10.1007/s00397-014-0774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0774-2

Keywords

Navigation