Skip to main content
Log in

Linear viscoelastic model for elongational viscosity by control theory

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Flows involving different types of chain branches have been modelled as functions of the uniaxial elongation using the recently generated constitutive model and molecular dynamics for linear viscoelasticity of polymers. Previously control theory was applied to model the relationship between the relaxation modulus, dynamic and shear viscosity, transient flow effects, power law and Cox–Merz rule related to the molecular weight distribution (MWD) by melt calibration. Temperature dependences and dimensions of statistical chain tubes were also modelled. The present study investigated the elongational viscosity. We introduced earlier the rheologically effective distribution (RED), which relates very accurately and linearly to the viscoelastic properties. The newly introduced effective strain-hardening distribution (REDH) is related to long-chain branching. This REDH is converted to real long-chain branching distribution by melt calibration and a simple relation formula. The presented procedure is very effective at characterizing long-chain branches, and also provides information on their structure and distribution. Accurate simulations of the elongational viscosities of low-density polyethylene, linear low-density polyethylene and polypropylene, and new types of MWDs are presented. Models are presented for strain-hardening that includes the monotonic increase and overshoot effects. Since the correct behaviour at large Hencky strains is still unclear, these theoretical models may aid further research and measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010) Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49:359–370

    Article  CAS  Google Scholar 

  • Auhl D, Chambon P, McLeish TCB, Read DJ (2009) Elongational flow of blends of long and short polymers: effective stretch relaxation time. Phys Rev Lett 103:219801

    Article  Google Scholar 

  • Borg T (Muolon Oy) (2011) Method of producing a shrinkable product U.S. Patent 5,053,174, 1 Oct 1991

  • Borg T, Pääkkönen EJ (2009a) Linear viscoelastic models: part I. Relaxation modulus and melt calibration. J Non-Newton Fluid Mech 156:121–128

    Article  CAS  Google Scholar 

  • Borg T, Pääkkönen EJ (2009b) Linear viscoelastic models: part II. Recovery of the molecular weight distribution using viscosity data. J Non-Newton Fluid Mech 156:129–138

    Article  CAS  Google Scholar 

  • Borg T, Pääkkönen EJ (2009c) Linear viscoelastic models: part III. Start-up and transient flow effects from the molecular weight distribution. J Non-Newton Fluid Mech 159:17–25

    Article  CAS  Google Scholar 

  • Borg T, Pääkkönen EJ (2010) Linear viscoelastic models: part IV. From molecular dynamics to temperature and viscoelastic relations using control theory. J Non-Newton Fluid Mech 165:24–31

    Article  CAS  Google Scholar 

  • Burghelea TI, Starý Z, Münstedt H (2011) On the viscosity maximum during the uniaxial extension of a low density polyethylene. J Non-Newton Fluid Mech 166:1198–1209

    Article  CAS  Google Scholar 

  • Chen X, Costeux C, Larson RG (2010) Characterization and prediction of long-chain branching in commercial polyethylenes by a combination of rheology and modeling methods. J Rheol 54:1185–1206

    Google Scholar 

  • Costeux S (2003) Modeling of randomly branched polymers produced by combination of several single-site catalysts: toward optimization of melt properties. Macromolecules 36:4168–4187

    Article  CAS  Google Scholar 

  • Costeux S, Wood-Adams P, Beigzadeh D (2002) Molecular structure of metallocene-catalyzed polyethylene: rheologically relevant representation of branching architecture in single catalyst and blended systems. Macromolecules 35:2514–2528

    Article  CAS  Google Scholar 

  • Doi M, Edwards SFJ (1978) Dynamics of concentrated polymer systems. Part 2. Molecular motion under flow. J. Chem Soc Faraday Trans 74:1802–1817

    Article  CAS  Google Scholar 

  • Doi M, Edwards SFJ (1979) Dynamics of concentrated polymer systems. Part 4. Rheological properties. Chem Soc Faraday Trans 75:38–54

    Article  CAS  Google Scholar 

  • Fleury G, Schlatter G, Muller R (2004) Non linear rheology for long chain branching characterization, comparison of two methodologies: fourier transform rheology and relaxation. Rheol Acta 44:174–187

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41:232–244

    Article  CAS  Google Scholar 

  • Gabriel C, Kokko E, Löfgren B, Seppälä J, Münstedt H (2002) Analytical and rheological characterization of long-chain branched metallocene-catalyzed ethylene homopolymers. Polymer 43:6383–6390

    Article  CAS  Google Scholar 

  • García-Franco CA, Srinivas S, Lohse DJ, Brant P (2001) Similarities between gelation and long chain branching viscoelastic behavior. Macromolecules 34:3115–3117

    Article  Google Scholar 

  • Hassager O, Marin JMR, Yu K, Rasmussen HK (2010) Polymeric liquids in extension: fluid mechanics or rheometry? Rheol Acta 49:543–554

    Article  CAS  Google Scholar 

  • Inkson NJ, McLeish TCB, Harlen OG, Groves DJ (1999) Molecular constitutive equations for a class of branched polymers: the pom-pom polymers. J Rheol 43:873–896

    Article  CAS  Google Scholar 

  • Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53:1001–1016

    Article  Google Scholar 

  • Keßner U, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Münstedt H (2010) Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 43:7341–7350

    Article  Google Scholar 

  • Kurzbeck S, Oster F, Münstedt H (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43:359–374

    Article  CAS  Google Scholar 

  • Laun HM (1978) Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17:1–15

    Article  Google Scholar 

  • Laun HM, Schuch H (1989) Transient elongational viscosities and drawability of polymer melts. J Rheol 33:119–175

    Article  CAS  Google Scholar 

  • Likhtman AE, Graham RS (2003) Simple constitutive equation for linear polymer melts derived from molecular theory: roli-poly equation. J Non-Newton Fluid Mech 114:1–12

    Article  CAS  Google Scholar 

  • Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Menedelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35:3066–3075

    Article  CAS  Google Scholar 

  • Mackley M (2010) Stretching polymer chains. Rheol Acta 49:443–458

    Article  CAS  Google Scholar 

  • Malmberg A, Kokko E, Lehmus P, Löfgren B, Seppälä J (1998) Long-chain branched polyethene polymerized by metallocene catalysts Et[Ind]2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO. Macromolecules 31:8448–8454

    Article  CAS  Google Scholar 

  • Malmberg A, Liimatta J, Lehtinen A, Löfgren B (1999) Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 32:6687–6696

    Article  CAS  Google Scholar 

  • Malmberg A, Gabriel C, Steffl T, Münstedt H, Löfgren B (2002) Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules 35:1038–1048

    Article  CAS  Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymers. J Rheol 42:81–110

    Article  CAS  Google Scholar 

  • Meimaroglou D, Kiparissides C (2010) Macromolecules 43:5820–5832

    Google Scholar 

  • Meimaroglou D, Krallis A, Saliakas V, Kiparissides C (2007) Macromolecules 40:2224–2234

    Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. J Rheol 23:421–436

    Article  Google Scholar 

  • Münstedt H, Kurzbeck S, Egersdörfer L (1998) Influence of molecular structure on rheological properties of polyethylenes part II. Elongational behavior. Rheol Acta 37:21–29

    Article  Google Scholar 

  • Münstedt H, Steffl T, Malmberg A (2005) Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes. Rheol Acta 45:14–22

    Article  Google Scholar 

  • Münstedt H, Kurzbeck S, Stange J (2006) Importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46:1190–1195

    Article  Google Scholar 

  • Petrie CJS (2006) One hundred years of extensional flow. J Non-Newton Fluid Mech 137:1–14

    Article  CAS  Google Scholar 

  • Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381

    Article  CAS  Google Scholar 

  • Rauschenberger V, Laun HM (1997) A recursive model for Rheotens tests. J Rheol 41:719–737

    Article  Google Scholar 

  • Rolón-Garrido VH, Wagner M H (2007) The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46:583–593

    Article  Google Scholar 

  • Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697

    Article  Google Scholar 

  • Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657–669

    Article  CAS  Google Scholar 

  • Soares JBP, Hamielec AE (1996) Bivariate chain length and long chain branching distribution for copolymerization of olefins and polyolefin chains containing terminal double bonds. Macromol Theory Simul 5:547–572

    Article  CAS  Google Scholar 

  • Stadler FJ, Kaschta J, Münstedt H, Becker F, Buback M (2009) Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheol Acta 48:479–490

    Article  CAS  Google Scholar 

  • Starý Z, Münstedt H (2008) Morphology development in PS/LLDPE blend during and after elongational deformation. J Polym Sci Part B: Polym Phys 46:16–27

    Article  Google Scholar 

  • Sugimoto M, Suzuki Y, Hyun K, Ahn KH, Ushioda T, Nishioka A, Taniguchi T, Koyama K (2006) Melt rheology of long-chain-branched polypropylenes. Rheol Acta 46:33–44

    Article  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp–Palmen Plot II—classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  CAS  Google Scholar 

  • van Gurp M, Palmen J (1998) Time temperature superposition of polymeric blends. Rheol Bull 67:5–8

    Google Scholar 

  • van Ruymbeke E, Nielsen J, Hassager O (2010a) Linear and nonlinear viscoelastic properties of bidisperse linear polymers: mixing law and tube pressure effect. J Rheol 54:1155–1172

    Article  Google Scholar 

  • van Ruymbeke E, Muliawan EB, Hatzikiriakos SG, Watanabe T, Hirao A, Vlassopoulos D (2010b) Viscoelasticity and extensional rheology of model Cayley-tree polymers of different generations. J Rheol 54:643–662

    Article  Google Scholar 

  • Vega JF, Fernándes M, Santamariá A, Muñoz-Escalona A, Lafuente P (1999) Rheological criteria to characterize metallocene catalyzed polyethylenes. Macromol Chem Phys 200:2257–2268

    Article  CAS  Google Scholar 

  • Vega JF, Expósito MT, Martínez-Salazar J, Lobón-Poo M, Barcina JO, Martínez AG, López M (2011) Molecular architecture and linear viscoelasticity of homogeneous ethylene/styrene copolymers. Rheol Acta 50:207–220

    Article  CAS  Google Scholar 

  • Wagner MH (1979) Zur Netzwerktheorie von Polymer-Schmelzen. Rheol Acta 18:33–50

    Article  CAS  Google Scholar 

  • Wagner MH, Kheirandish S, Stange J, Münstedt H (2006) Modeling elongational viscosity of blends of linear and long-chain branched polypropylenes. Rheol Acta 46:211–221

    Article  CAS  Google Scholar 

  • Wood-Adams PM, Dealy JM (2000) Using rheological data to determine the branching level in metallocene polyethylenes. Macromolecules 33:7481–7488

    Article  CAS  Google Scholar 

  • Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499

    Article  CAS  Google Scholar 

  • Zimm BH, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–1314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Borg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, T., Pääkkönen, E.J. Linear viscoelastic model for elongational viscosity by control theory. Rheol Acta 51, 371–384 (2012). https://doi.org/10.1007/s00397-011-0598-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0598-2

Keywords

Navigation