Skip to main content
Log in

Phase separation of aqueous solution of methylcellulose

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

As we determined visually by the temperature cloud point method, the coexistence phase curve of methylcellulose in aqueous solution belongs to the LCST (low critical solution temperature) type. Rheological dynamic measurements reveal the existence of three gel domains. The gel (I) localized in the homogeneous phase at low concentration and low temperature, is a very weak gel, where the cross-links are attributed to pairwise hydrophobic interactions between the most hydrophobic zones of the backbone: the trimethyl blocks. The second gel (II) was revealed in the high concentration regime and below the LCST, it may be attributed to the formation of crystallites which play the role of cross-linking points. The third gel was concomitant to the micro-phase separation. In these turbid gels, syneresis develops slowly with time: the higher the temperature and the lower the concentration, the faster the syneresis. Near the three sol-gel transitions, a power law frequency dependence of the loss and storage moduli was observed and the viscoelastic exponent Δ(G′ G″ ω Δ) was found to be 0.76 and 0.8 and to reach 1 at high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heymann E (1935) Trans Farad Soc 31:846–864

    Article  CAS  Google Scholar 

  2. Sarkar N (1979) Appl Polym Sci 24: 1073–1087

    Article  CAS  Google Scholar 

  3. Grover JA (1986) In: Glicksman M (ed) Food Hydrocolloids, Vol III, CRC Press, Boca Raton, pp 121–154

    Google Scholar 

  4. Greminger GK, Savage AB (1959) In: Whistler RL, BeMiller JN (eds) Industrial Gums-Polysaccharides and their derivatives. Academic Press, New York, pp 565–596

    Google Scholar 

  5. Arisz PW, Kauw HJJ, Boon JJ (1995) Carbohydr Res 271:1–14

    Article  CAS  Google Scholar 

  6. Doelker E (1990) Stud Polym Sci 8: 125–145

    CAS  Google Scholar 

  7. Koda S, Hori T, Nomura H, Kawaizumi F (1991) Polymer 32:2806–2810

    Article  CAS  Google Scholar 

  8. Rees DA (1972) Chem Ind London 630

  9. Sarkar N (1995) Carbohydr Polym 26:195–203

    Article  CAS  Google Scholar 

  10. Khomutov LI, Ryskina II, Panina NI, Dubina LG, Timofeeva GH (1993) Polym Sci 35:320–323

    Google Scholar 

  11. Kawanishi K, Komatsu M, Inoue T (1987) Polymer 28:980–984

    Article  CAS  Google Scholar 

  12. Palma-Vittorelli MB (1989) Int J Quantum Chem 35:113–124

    Article  CAS  Google Scholar 

  13. Matsuo M, Kawase M, Sugiura Y, Takematsu S, Hara C (1993) Macro-molecules 26:4461–4471

    CAS  Google Scholar 

  14. Vigouret M, Rinaudo M, Desbrières J (1996) J Chim Phys 93:858–869

    CAS  Google Scholar 

  15. Haque A, Morris ER (1993) Carbohydr Polym 22:161–173

    Article  CAS  Google Scholar 

  16. Flory PJ (1978) Principles of Polymer Chemistry. Cornell University Press, Ithaca and London

    Google Scholar 

  17. Hirrien M, Desbrières J, Rinaudo M (1996) Carbohydr Polym, in press

  18. Devreux F, Boilot JP, Chaput F, Malier L, Axelos MAV (1993) Phys Rev E 47:2689–2694

    Article  CAS  Google Scholar 

  19. Axelos MAV, Kolb M (1990) Phys Rev Lett 64:1457–1460

    Article  CAS  Google Scholar 

  20. Durand D, Delsanti M, Adam M, Luck JM (1987) Europhys Lett 3:297–301

    Article  CAS  Google Scholar 

  21. Stauffer D (1985) Introduction to Percolation Theory. Taylor & Francis, London and Philadelphia

    Google Scholar 

  22. Lárez-VC, Crescenzi V, Ciferri A (1995) Macromolecules 28:5280–5284

    Article  Google Scholar 

  23. Cabane B, Lindell K, Engström S, Lindamn B (1996) Macromolecules 29: 3188–3197

    Article  CAS  Google Scholar 

  24. Johansson HO, Karlström G, Tjerneld F (1993) Macromolecules 26:34478–4483

    Article  Google Scholar 

  25. Takahashi SI, Fujimoto T, Miyamoto T, Inagaki H (1987) J Polym Sci: Part A Polym Chem 25:987–994

    Article  CAS  Google Scholar 

  26. Miyamoto T, Long M, Donkai N (1995) Macromol Symp 99:141–147

    CAS  Google Scholar 

  27. Kato T, Yokoyama M, Takahashi A (1978) Colloid & Polym Sci 256:15–21

    Article  CAS  Google Scholar 

  28. Nyström B, Walderhaug H, Hansen FK (1995) Langmuir 11:750–757

    Article  Google Scholar 

  29. Michon C, Cuvelier G, Launay B (1993) Rheol Acta 32:94–103

    Article  CAS  Google Scholar 

  30. San Biagio PL, Bulone D, Emanuele A, Madonia F, Di Stefano L, Giacomazza D, Trapanese M, Palma-Vittorelli MB, Palma MU (1990) Makromol Chem Macromol Symp 40:33–44

    Google Scholar 

  31. Luan CH, Parker TM, Gowda DC, Urry DW (1992) Biopolymers 32:1251–1261

    Article  CAS  Google Scholar 

  32. Lewis KE, Robinson CP (1970) J Colloid Interface Sci 32:539–546

    Article  CAS  Google Scholar 

  33. Chevillard C, Axelos MAV, to be published

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevillard, C., Axelos, M.A.V. Phase separation of aqueous solution of methylcellulose. Colloid Polym Sci 275, 537–545 (1997). https://doi.org/10.1007/s003960050116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003960050116

Key words

Navigation