Skip to main content
Log in

Preparation and properties of marine-derived sphingan WL gum-metal ion composite hydrogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Sphingan WL gum produced by marine Sphingomonas sp. WG is a new kind of extracellular polysaccharide reported by our group in 2016. This work selected five metal ions, Na+, Zn2+, Ca2+, Cu2+, and Fe3+, to prepare sphingan WL gum-metal ion (WL-M) composite hydrogels by immersion-adsorption method for the first time. With the increase of immersion solution concentration, the volume of WL-M shrinks, the water content decreases, and the content of metal ions increases. WL-Na2, with the highest water content (91.81%), has the lowest metal ion content (20.76 mg/g); WL-Cu4, with the highest metal ion content (99.80 mg/g), has the lowest water content (73.07%). The results of inductively coupled plasma optical emission spectroscopy show that the adsorption capacity (mg/g) of metal ions by WL is in the order of Cu2+ > Zn2+ > Fe3+ > Ca2+ > Na+. Fourier transform infrared and X-ray photoelectron spectroscopy results suggest that carboxyl and hydroxyl groups are the main active sites of WL interacting with metal ions. The rheological test results reveal that the order of cross-linking effect is Ca2+ > Fe3+ > Cu2+ > Zn2+ > Na+. The G' of WL-Ca4 is the largest, reaching 154.9 Pa at 1 rad/s. The metal ion release behavior was found to follow the Korsmeyer-Peppas model (R2 > 0.97, n < 0.43) and be pH responsive. WL-Ca3 shows good biocompatibility, self-healing, and injectable properties. The above results indicate that the WL-Ca hydrogels have the most promising application prospects in biomedicine and deserve further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900. https://doi.org/10.1007/s00253-008-1496-0

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W, Zhu H (2016) The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG Sci Rep 6:37899. https://doi.org/10.1038/srep37899

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Feng Z, Sun Y, Zhou W, Jiao X, Zhu H (2016) Draft genome sequence of Sphingomonas sp. WG, a welan gum-producing strain. Genome Announc 4:1–2. https://doi.org/10.1128/genomeA.01709-15

    Article  CAS  Google Scholar 

  4. Li H, Li J, Jiao X, Li K, Sun Y, Zhou W, Shen Y, Qian J, Chang A, Wang J, Zhu H (2019) Characterization of the biosynthetic pathway of nucleotide sugar precursor UDP-glucose during sphingan WL gum production in Sphingomonas sp. WG J Biotechnol 302:1–9. https://doi.org/10.1016/j.jbiotec.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  5. Ji S, Li H, Wang G, Lu T, Ma W, Wang J, Zhu H, Xu H (2020) Rheological behaviors of a novel exopolysaccharide produced by Sphingomonas WG and the potential application in enhanced oil recovery. Int J Biol Macromol 162:1816–1824. https://doi.org/10.1016/j.ijbiomac.2020.08.114

    Article  CAS  PubMed  Google Scholar 

  6. Chang A, Qian J, Li H, Wang Y, Lin J, He Q, Shen Y, Zhu H (2021) Characterization and function of a novel welan gum lyase from marine Sphingomonas sp. WG. Front Microbiol 12:638355. https://doi.org/10.3389/fmicb.2021.638355

  7. Li H, Li K, Guo Z, Xue H, Li J, Ji S, Wang J, Zhu H (2021) The Function of beta-1,4-glucuronosyltransferase WelK in the sphingan WL gum biosynthesis process in marine Sphingomonas sp. WG Mar Biotechnol (NY) 23:39–50. https://doi.org/10.1007/s10126-020-09998-9

    Article  CAS  PubMed  Google Scholar 

  8. Ji S, Wei F, Li B, Li P, Li H, Li S, Wang J, Zhu H, Xu H (2022) Synergistic effects of microbial polysaccharide mixing with polymer and nonionic surfactant on rheological behavior and enhanced oil recovery. J Petrol Sci Eng 208:109746. https://doi.org/10.1016/j.petrol.2021.109746

  9. Ji S, Li H, Xue H, Guo Z, Liu J, Chen M, Wang J, Zhu H, Xu H (2022) Effects of monosaccharide composition and acetyl content on the rheological properties of sphingan WL. Colloid Surface A 650:129609. https://doi.org/10.1016/j.colsurfa.2022.129609

  10. Chang A, Ye Z, Ye Z, Deng J, Lin J, Wu C, Zhu H (2022) Citric acid crosslinked sphingan WL gum hydrogel films supported ciprofloxacin for potential wound dressing application. Carbohyd Polym 291:119520. https://doi.org/10.1016/j.carbpol.2022.119520

  11. Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1269. https://doi.org/10.1038/ncomms2271

    Article  CAS  PubMed  Google Scholar 

  12. Cui R, Zhang L, Ou R, Xu Y, Xu L, Zhan X Y, Li D (2022) Polysaccharide-based hydrogels for wound dressing: design considerations and clinical applications. Front Bioeng Biotechnol 10:845735. https://doi.org/10.3389/fbioe.2022.845735

  13. Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L (2022) Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: a review. J Agric Food Chem 70:6300–6316. https://doi.org/10.1021/acs.jafc.2c01080

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X (2022) Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohyd Polym 283:119161. https://doi.org/10.1016/j.carbpol.2022.119161

  15. Das M, Giri T K (2020) Hydrogels based on gellan gum in cell delivery and drug delivery. J Drug Deliv Sci Tec 56:101586. https://doi.org/10.1016/j.jddst.2020.101586

  16. Villarreal-Otalvaro C, Coburn JM (2021) Fabrication methods and form factors of gellan gum-based materials for drug delivery and anti-cancer applications. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c00685

    Article  PubMed  Google Scholar 

  17. Feketshane Z, Alven S, Aderibigbe BA (2022) Gellan gum in wound dressing scaffolds. Polymers 14:4098. https://doi.org/10.3390/polym14194098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Yang P, Pageni P, Tang C (2017) Recent advances in metal-containing polymer hydrogels. Macromol Rapid Commun 38:1700109. https://doi.org/10.1002/marc.201700109

    Article  CAS  Google Scholar 

  19. Shen J, Dai Y, Xia F, Zhang X (2022) Role of divalent metal ions in the function and application of hydrogels. Prog Polym Sci 135:101622. https://doi.org/10.1016/j.progpolymsci.2022.101622

  20. Cao J, Wu P, Cheng Q, He C, Chen Y, Zhou J (2021) Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing. ACS Appl Mater Interfaces 13:24095–24105. https://doi.org/10.1021/acsami.1c02089

    Article  CAS  PubMed  Google Scholar 

  21. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siew C, Williams P (2005) New insights into the mechanism of gelation of alginate and pectin: charge annihilation and reversal mechanism. Biomacromol 6:963–969. https://doi.org/10.1021/bm049341l

    Article  CAS  Google Scholar 

  23. Zhu Y, Yang Z, Pan Z, Hao Y, Wang C, Dong Z, Li Q, Han Y, Tian L, Feng L, Liu Z (2022) Metallo-alginate hydrogel can potentiate microwave tumor ablation for synergistic cancer treatment. Sci Adv 8:eabo5285. https://doi.org/10.1126/sciadv.abo5285

  24. Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14:3338–3345. https://doi.org/10.1021/bm400993f

    Article  CAS  Google Scholar 

  25. Yang C, Wang M, Haider H, Yang J, Sun J, Chen Y, Zhou J, Suo Z (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422. https://doi.org/10.1021/am403966x

    Article  CAS  PubMed  Google Scholar 

  26. Nele V, Wojciechowski JP, Armstrong JPK, Stevens MM (2020) Tailoring gelation mechanisms for advanced hydrogel applications. Adv Funct Mater 30:2002759. https://doi.org/10.1002/adfm.202002759

    Article  CAS  Google Scholar 

  27. Moorcroft M, Davis J, Compton R (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54:785–803. https://doi.org/10.1016/s0039-9140(01)00323-x

    Article  CAS  PubMed  Google Scholar 

  28. Deacon GB, Phillips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordin Chem Rev 33:227–250. https://doi.org/10.1016/S0010-8545(00)80455-5

    Article  CAS  Google Scholar 

  29. Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohyd Res 345:469–473. https://doi.org/10.1016/j.carres.2009.12.010

    Article  CAS  Google Scholar 

  30. Lim SF, Zheng YM, Zou SW, Chen J (2008) Characterization of copper adsorption onto an alginate encapsulated magnet-ic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environ Sci Technol 42:2551–2556. https://doi.org/10.1021/es7021889

    Article  CAS  PubMed  Google Scholar 

  31. Zheng J, Feng H, Lam MH, Lam PK, Ding Y, Yu H (2009) Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J Hazard Mater 171:780–785. https://doi.org/10.1016/j.jhazmat.2009.06.078

    Article  CAS  PubMed  Google Scholar 

  32. Chandrasekaran R, Radha A, Lee E (1994) Structural roles of calcium ions and side chains in welan: an X-ray study. Carbohyd Res 252:183–207. https://doi.org/10.1016/0008-6215(94)90015-9

    Article  CAS  Google Scholar 

  33. Chandrasekaran R, Puigjaner L, Joyce K, Arnott S (1988) Cation interactions in gellan: an X-Ray study of the potassium salt. Carbohyd Res 181:23–40. https://doi.org/10.1016/0008-6215(88)84020-5

    Article  CAS  Google Scholar 

  34. Wang R, Chen C, Pang Z, Wang X, Zhou Y, Dong Q, Guo M, Gao J, Ray U, Xia Q, Lin Z, He S, Foster B, Li T, Hu L (2022) Fabrication of cellulose-graphite foam via ion cross-linking and ambient-drying. Nano Lett 22:3931–3938. https://doi.org/10.1021/acs.nanolett.2c00167

    Article  CAS  PubMed  Google Scholar 

  35. Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A (2017) Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharmaceut 532:66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064

    Article  CAS  Google Scholar 

  36. Salahuddin N, Rehab A, Emad S (2021) Synthesis and efficacy of norfloxacin loaded onto magnetic hydrogel nanocomposites. RSC Adv 11:30183–30194. https://doi.org/10.1039/d1ra04230k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaya S, Bezerra C W B, Fernandes de Farias R, Çiltaş A Ç, Elik M (2023) Metal cations toxicity: an inorganic interpretation. J Indian Chem Soc 100:100840. https://doi.org/10.1016/j.jics.2022.100840

  38. Xu B, Zhang X, Gan S, Zhao J, Rong J (2019) Dual ionically cross-linked hydrogels with ultra-tough, stable, and self-healing properties. J Mater Sci 54:14218–14232. https://doi.org/10.1007/s10853-019-03773-5

    Article  CAS  Google Scholar 

  39. Park J, Kyung K, Tsukada K, Kim S, Shiratori S (2017) Biodegradable polycaprolactone nanofibres with β-chitosan and calcium carbonate produce a hemostatic effect. Polymer 123:194–202. https://doi.org/10.1016/j.polymer.2017.07.013

    Article  CAS  Google Scholar 

  40. Madreiter-Sokolowski CT, Thomas C, Ristow M (2020) Interrelation between ROS and Ca(2+) in aging and age-related diseases. Redox Biol 36:101678. https://doi.org/10.1016/j.redox.2020.101678

  41. Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, Xiao Q, Liu J, Ramakrishna S, He L (2019) Advances in injectable self-healing biomedical hydrogels. Acta Biomater 90:1–20. https://doi.org/10.1016/j.actbio.2019.03.057

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (U1805234 and 22007013), Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering (2021D039), Natural Science Foundation of Fujian Province of China (2020J05033), Program for Innovative Research Team in Science and Technology in Fujian Province University, 100 Talents Program of Fujian Province, and Scientific Research Start-up Fund for High-Level Talents in Fujian Normal University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Aiping Chang and Hu Zhu; Investigation, Jinfeng Deng and Aiping Chang; Data curation, Jieying Lin, Zhenyin Huang and Xiangyang Xu; Writing – original draft, Aiping Chang and Jinfeng Deng; Writing – review & editing, Aiping Chang and Hu Zhu. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Aiping Chang or Hu Zhu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1172 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Lin, J., Huang, Z. et al. Preparation and properties of marine-derived sphingan WL gum-metal ion composite hydrogels. Colloid Polym Sci 301, 1115–1124 (2023). https://doi.org/10.1007/s00396-023-05133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05133-x

Keywords

Navigation