Skip to main content
Log in

Removal of Pb2+ and Cd2+ by adsorption onto Y zeolite and its selectivity of retention in an actual contaminated effluent

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The most important natural resource for human health and well-being is water, which can be affected by different sources, such as physical, organic, chemical, and microbiological ones. CBV 760 commercial zeolite was used and tested to remove inorganic pollutants, lead, and cadmium. Adsorption isotherms were used to assess the adsorption properties of contaminants and real effluent. At the solution pH (4.5 and 5), adsorption kinetics and isotherms were conducted for lead and cadmium, respectively. The investigated zeolite was quite efficient in lead and cadmium removal, as the maximal adsorbed amounts were Qa = 175 and 148 mg g−1 for lead and cadmium, respectively, at T = 308 K. Adsorption capacity is pH dependent. Adsorption of Pb2+ and Cd2+ is highest at pH 8 (Qa = 107 and 53.58 mg g−1, respectively). The CBV 760 displays more affinity for Pb2+ than Cd2+. It is worth noticing that CBV 760 exhibits good selectivity for heavy metal retention metals, namely, Ni2+, Cu2+, Cd2+, and Pb2+, in an actual contaminated effluent with a removal yield of 80% on CBV 760.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Y, Wang J-D, Wang X-J, Wang J-F (2012) Adsorption–desorption of Cd(II) and Pb(II) on Ca-Montmorillonite. nd Eng Chem Res 51(18):6520–6528. https://doi.org/10.1021/ie203063s

  2. Gong J, Liu T, Wang X, Hu X, Zhang L (2011) Efficient Removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere. Environ Sci Technol 45(14):6181–6187. https://doi.org/10.1021/es200668q

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg ED (1979) La santé des océans. Unesco, Paris, p 188

    Google Scholar 

  4. Nitta T (1972) MpiJ. Marine Pollution and Sea Life, edby M. Surrey, Fishing News (Books), Ruivo. West Byfleet, pp 77–81

    Google Scholar 

  5. Kurland LT (1960) SNF, H. SIEDLER Minamata disease. The outbreak of a neurologic disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurol 1:370–395

    CAS  PubMed  Google Scholar 

  6. Agarwal SK (2009) HMP, Published by SB. Nangia A P H Publishing Corporation 4435–36/7:227

  7. Simeonidis K, Mourdikoudis S, Kaprara E, Mitrakas M, Polavarapu L (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol 2(1):43–70. https://doi.org/10.1039/C1035EW00152H

    Article  Google Scholar 

  8. Turhanen PA, Vepsäläinen JJ, Peräniemi S (2015) Advanced material and approach for metal ions removal from aqueous solutions. Sci Rep 5(1):8992. https://doi.org/10.1038/srep08992.10.1038/srep08992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciszewski D, Grygar TM (2016) A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air Soil Pollut 227(7):239. https://doi.org/10.1007/s11270-11016-12934-11278

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.1011.1011

    Article  CAS  PubMed  Google Scholar 

  11. Razak NHA, Praveena SM, Aris AZ, Hashim Z (2015) Drinking water studies: a review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). J Epidemiol Glob Health 5(4):297–310. https://doi.org/10.1016/j.jegh.2015.1004.1003

    Article  Google Scholar 

  12. Shanker AK (2019) Chromium: environmental pollution, health effects and mode of action☆. In: Nriagu J (ed) Encyclopedia of Environmental Health (Second Edition). Elsevier, Oxford 624–633. https://doi.org/10.1016/B1978-1010-1012-409548-409549.411575-409541

  13. Mohy Eldin MS, Abu-Saied MA, Tamer TM, Youssef ME, Hashem AI, Sabet MM (2016) Development of polystyrene based nanoparticles ions exchange resin for water purification applications. Desalin Water Treat 57(32):14810–14823. https://doi.org/10.11080/19443994.19442015.11080192

  14. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258. https://doi.org/10.1016/j.clay.2015.1012.1024

    Article  CAS  Google Scholar 

  15. Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh VV, Orozco J, Galarnyk M, Wang J (2015) Self-propelled activated carbon janus micromotors for efficient water purification. Small 11(4):499–506. https://doi.org/10.1002/smll.201402215

    Article  CAS  PubMed  Google Scholar 

  16. Liang L, Xi F, Tan W, Meng X, Hu B, Wang X (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3(3):255–281. https://doi.org/10.1007/s42773-42021-00101-42776

    Article  CAS  Google Scholar 

  17. Fouda-Mbanga BG, Prabakaran E, Pillay K (2021) Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: a review. Biotechnol Rep 30:e00609. https://doi.org/10.01016/j.btre.02021.e00609

  18. Renu AM, Singh K (2016) Heavy metal removal from wastewater using various adsorbents: a review. J Water Reuse Desalin 7(4):387–419. https://doi.org/10.2166/wrd.2016.2104

    Article  Google Scholar 

  19. Ghasemi Z, Sourinejad I, Kazemian H, Rohani S (2018) Application of zeolites in aquaculture industry: a review. Rev Aquac 10(1):75–95. https://doi.org/10.1111/raq.12148

    Article  Google Scholar 

  20. Flanigen EM (1984) Molecular sieve zeolite technology: the first twenty-five years. In: Ribeiro FR, Rodrigues AE, Rollmann LD, Naccache C (eds) Zeolites: Science and Technology. Springer Netherlands, Dordrecht 3–34. https://doi.org/10.1007/1978-1094-1009-6128-1009_1001

  21. de Magalhães LF, da Silva GR, Peres AEC (2022) Zeolite application in wastewater treatment. Adsorpt Sci Technol 2022:4544104. https://doi.org/10.1155/2022/4544104

    Article  CAS  Google Scholar 

  22. Mintova S (2003) Nanosized molecular sieves. Collect Czech Chem Commun 68:2032–2054. https://doi.org/10.1135/cccc20032032

    Article  CAS  Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. https://doi.org/10.1021/ja01269a01023

    Article  CAS  Google Scholar 

  24. Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1):171–177. https://doi.org/10.1023/B:SCIE.0000013305.0000099473.cf

    Article  Google Scholar 

  25. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124. https://doi.org/10.1016/S0923-0467(1098)00076-00071

    Article  CAS  Google Scholar 

  26. Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37(4):1454–1463. https://doi.org/10.1021/ie9703954

    Article  Google Scholar 

  27. Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57U(1):385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  Google Scholar 

  28. Langmuir I (1918) The adsorption of gases on plane surfaces oF glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a02004

    Article  CAS  Google Scholar 

  29. Oubagaranadin JUK, Murthy ZVP (2010) Isotherm modeling and batch adsorber design for the adsorption of Cu(II) on a clay containing montmorillonite. Appl Clay Sci 50(3):409–413. https://doi.org/10.1016/j.clay.2010.1009.1008

    Article  CAS  Google Scholar 

  30. McKay G, Bino MJ, Altamemi AR (1985) The adsorption of various pollutants from aqueous solutions on to activated carbon. Water Res 19(4):491–495. https://doi.org/10.1016/0043-1354(1085)90041-90047

    Article  CAS  Google Scholar 

  31. Namasivayam C, Senthilkumar S (1997) Recycling of industrial solid waste for the removal of mercury (II) by adsorption process. Chemosphere 34(2):357–375. https://doi.org/10.1016/S0045-6535(1096)00383-00389

    Article  CAS  Google Scholar 

  32. Mozgawa W (2001) The relation between structure and vibrational spectra of natural zeolites. J Mol Struct 596(1):129–137. https://doi.org/10.1016/S0022-2860(1001)00741-00744

    Article  CAS  Google Scholar 

  33. Joshi UD, Joshi PN, Tamhankar SS, Joshi VV, Rode CV, Shiralkar VP (2003) Effect of nonframework cations and crystallinity on the basicity of NaX zeolites. Appl Catal A: Gen 239(1):209–220. https://doi.org/10.1016/S0926-1860X(1002)00391-00395

    Article  CAS  Google Scholar 

  34. Dabbawala AA, Vaithilingam BV, Mittal H, Wahedi YA, Khan S, Joseph T, Singaravel G, Morin S, Berthod M, Alhassan SM (2020) Synthesis and catalytic performance of zeolite-Y supported on silicon carbide in n-heptane cracking. Appl Catal A: Gen. https://doi.org/10.1016/j.apcata.2020.117866

    Article  Google Scholar 

  35. Hamidi R, Khoshbin R, Karimzadeh R (2021) A new approach for synthesis of well-crystallized Y zeolite from bentonite and rice husk ash used in Ni-Mo/Al2O3-Y hybrid nanocatalyst for hydrocracking of heavy oil. Adv Powder Technol 32(2):524–534. https://doi.org/10.1016/j.apt.2020.1012.1029

    Article  CAS  Google Scholar 

  36. Zhang R, Xu S, Raja D, Khusni NB, Liu J, Zhang J, Abdulridha S, Xiang H, Jiang S, Guan Y, Jiao Y, Fan X (2019) On the effect of mesoporosity of FAU Y zeolites in the liquid-phase catalysis. Micropor Mesopor Mat 278:297–306. https://doi.org/10.1016/j.micromeso.2018.1012.1003

    Article  CAS  Google Scholar 

  37. Tolentino CMC, de Luna MDG, Futalan CM, Choi AES, Manegdeg FG, Grisdanurak N (2020) Influence of hydrocarbons on hydrogen chloride removal from refinery off-gas by zeolite NaY derived from rice husks. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138782

    Article  PubMed  Google Scholar 

  38. Karge HG (1998) Characterization by infrared spectroscopy. Micropor Mesopor Mat 22(4):547–549. https://doi.org/10.1016/S1387-1811(1098)80021-80028

    Article  CAS  Google Scholar 

  39. Oruji S, Khoshbin R, Karimzadeh R (2018) Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: the effect of irradiation time. Fuel Process Technol 176:283–295. https://doi.org/10.1016/j.fuproc.2018.1003.1035

    Article  CAS  Google Scholar 

  40. McCusker LB, Baerlocher C (2001) Chapter 3 Zeolite structures. In: van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Studies in surface science and catalysis, vol 137. Elsevier 37–67. https://doi.org/10.1016/S0167-2991(1001)80244-80245

  41. Jentys A, Lercher JA (2001) Chapter 8 Techniques of zeolite characterization. In: van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Studies in Surface Science and Catalysis, vol 137. Elsevier 345–386. https://doi.org/10.1016/S0167-2991(1001)80250-80250

  42. Hassan H, Hameed BH (2011) Oxidative decolorization of acid red 1 solutions by Fe–zeolite Y type catalyst. Desalination 276(1):45–52. https://doi.org/10.1016/j.desal.2011.1003.1018

    Article  CAS  Google Scholar 

  43. Zhu L, Lv X, Tong S, Zhang T, Song Y, Wang Y, Hao Z, Huang C, Xia D (2019) Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas. J Nat Gas Eng. https://doi.org/10.1016/j.jngse.2019.102941

    Article  Google Scholar 

  44. Gerards RTJ, Fernandes A, Graça I, Ribeiro MF (2020) Towards understanding of phenolic compounds impact on Ni- and V-USY zeolites during bio-oils co-processing in FCC units. Fuel. https://doi.org/10.1016/j.fuel.2019.116372

    Article  Google Scholar 

  45. Paul D, Kasera N, Kolar P, Hall SG (2020) Physicochemical characterization data of pine-derived biochar and natural zeolite as precursors to catalysts. Chem Data Collect. https://doi.org/10.1016/j.cdc.2020.100573

    Article  Google Scholar 

  46. Moon DJ, Lim WT (2020) Synthesis and single-crystal structure of sodium sulfide cationic cluster in the sodalite cavity of zeolite Y (FAU, Si/Al = 1.56). J Porous Mater 27(4):1233–1240. https://doi.org/10.1007/s10934-10020-00904-10931

  47. Kaneko K, Ishii C, Ruike M, kuwabara H, (1992) Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30(7):1075–1088. https://doi.org/10.1016/0008-6223(92)90139-N

    Article  CAS  Google Scholar 

  48. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  49. Amari A, Chlendi M, Gannouni A, Bellagi A (2010) Optimised activation of bentonite for toluene adsorption. Appl Clay Sci 47(3):457–461. https://doi.org/10.1016/j.clay.2009.1011.1035

    Article  CAS  Google Scholar 

  50. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 1:373–380. https://doi.org/10.1021/ja01145a01126

    Article  Google Scholar 

  51. Ozdes D, Duran C, Senturk HB (2011) Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. J Environ Manage 92(12):3082–3090. https://doi.org/10.1016/j.jenvman.2011.3007.3022

    Article  CAS  PubMed  Google Scholar 

  52. Sáez P, Rodríguez A, Gómez JM, Paramio C, Fraile C, Díez E (2021) H-Clinoptilolite as an efficient and low-cost adsorbent for batch and continuous gallium removal from aqueous solutions. J Sustain Metall 7(4):1699–1716. https://doi.org/10.1007/s40831-40021-00437-40830

    Article  Google Scholar 

  53. Elwakeel KZ, El-Bindary AA, Kouta EY (2017) Retention of copper, cadmium and lead from water by Na-Y-zeolite confined in methyl methacrylate shell. J Environ Chem Eng 5(4):3698–3710. https://doi.org/10.1016/j.jece.2017.3606.3049

    Article  CAS  Google Scholar 

  54. Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. CLEAN – Soil. Air, Water 12:937–962. https://doi.org/10.1002/clen.200800167

    Article  Google Scholar 

  55. Wang S, Vincent T, Faur C, Guibal E (2017) Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads. Bioresour Technol 231:26–35. https://doi.org/10.1016/j.biortech.2017.1001.1066

    Article  CAS  PubMed  Google Scholar 

  56. Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 7:1619–1627. https://doi.org/10.1016/S0043-1354(1602)00524-00529

    Article  Google Scholar 

  57. Wang S, Dong Y, He M, Chen L, Yu X (2009) Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions. Appl Clay Sci 43(2):164–171. https://doi.org/10.1016/j.clay.2008.1007.1028

    Article  CAS  Google Scholar 

  58. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Colloid Interface Sci 47(3):755–765. https://doi.org/10.1016/0021-9797(1074)90252-90255

    Article  CAS  Google Scholar 

  59. Neskoromnaya EA, Khamizov RK, Melezhyk AV, Memetova AE, Mkrtchan ES, Babkin AV (2022) Adsorption of lead ions (Pb2+) from wastewater using effective nanocomposite GO/CMC/FeNPs: kinetic, isotherm, and desorption studies. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2022.130224

    Article  Google Scholar 

  60. Airoldi C, Critter SAM (1997) Brazilian red latosol a typic soil as an exchanger: a thermodynamic study involving Cu, Zn, Cd, Hg, Pb. Ca and Na. Clays Clay Min 45(2):125–131. https://doi.org/10.1346/CCMN.1997.0450201

    Article  CAS  Google Scholar 

  61. González MT, Molina-Sabio M, Rodríguez-Reinoso F (1994) Steam activation of olive stone chars, development of porosity. Carbon 32(8):1407–1413. https://doi.org/10.1016/0008-6223(1494)90133-90133

    Article  Google Scholar 

  62. Adebowale KO, Unuabonah IE, Olu-Owolabi BI (2006) The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mater 134(1):130–139. https://doi.org/10.1016/j.jhazmat.2005.1010.1056

    Article  CAS  PubMed  Google Scholar 

  63. Hang Y, Si Y, Zhou Q, Yin H, Wang A, Cao A (2019) Morphology-controlled synthesis of calcium titanate particles and adsorption kinetics, isotherms, and thermodynamics of Cd(II), Pb(II), and Cu(II) cations. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.120789

    Article  PubMed  Google Scholar 

  64. Wu D, Wang Y, Li Y, Wei Q, Hu L, Yan T, Feng R, Yan L, Du B (2019) Phosphorylated chitosan/CoFe2O4 composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: adsorption performance and mechanism studies. J Mol Liq 277:181–188. https://doi.org/10.1016/j.molliq.2018.1012.1098

    Article  CAS  Google Scholar 

  65. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Treatment of artificial textile dye effluent containing Direct Yellow 12 by orange peel carbon. Desalination 238(1):210–232. https://doi.org/10.1016/j.desal.2008.1002.1014

    Article  CAS  Google Scholar 

  66. Hameed BH, Daud FBM (2008) Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chem Eng J 139(1):48–55. https://doi.org/10.1016/j.cej.2007.1007.1089

    Article  CAS  Google Scholar 

  67. Allen SJ, McKay G, Khader KYH (1989) Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut 56(1):39–50. https://doi.org/10.1016/0269-7491(1089)90120-90126

    Article  CAS  PubMed  Google Scholar 

  68. Qu J, Tian X, Jiang Z, Cao B, Akindolie MS, Hu Q, Feng C, Feng Y, Meng X, Zhang Y (2020) Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwave-functionalized cellulose: kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121718

    Article  PubMed  Google Scholar 

  69. Eren E, Cubuk O, Ciftci H, Eren B, Caglar B (2010) Adsorption of basic dye from aqueous solutions by modified sepiolite: equilibrium, kinetics and thermodynamics study. Desalination 252(1):88–96. https://doi.org/10.1016/j.desal.2009.1010.1020

    Article  CAS  Google Scholar 

  70. He J, Li Y, Wang C, Zhang K, Lin D, Kong L, Liu J (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl Surf Sci 426:29–39. https://doi.org/10.1016/j.apsusc.2017.1007.1103

    Article  CAS  Google Scholar 

  71. Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304(1):21–28. https://doi.org/10.1016/j.jcis.2006.1007.1068

    Article  CAS  PubMed  Google Scholar 

  72. Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132(1):299–309. https://doi.org/10.1016/j.cej.2007.1001.1016.10.1016/j.cej.2007.01.016

    Article  CAS  Google Scholar 

  73. Belviso C (2020) Zeolite for potential toxic metal uptake from contaminated soil: a brief review. Processes 8(7):820. https://doi.org/10.3390/pr8070820

    Article  CAS  Google Scholar 

  74. Dai S, Wang N, Qi C, Wang X, Ma Y, Yang L, Liu X, Huang Q, Nie C, Hu B, Wang X (2019) Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions. Sci Total Environ 685:986–996. https://doi.org/10.1016/j.scitotenv.2019.1006.1292

    Article  CAS  PubMed  Google Scholar 

  75. Li S, Dong L, Wei Z, Sheng G, Du K, Hu B (2020) Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J Environ Sci 96:127–137. https://doi.org/10.1016/j.jes.2020.1005.1001

    Article  CAS  Google Scholar 

  76. Liu L, Luo X-B, Ding L, Luo S-L (2019) 4 - Application of nanotechnology in the removal of heavy metal from water. In: Luo X, Deng F (eds) Nanomaterials for the removal of pollutants and resource reutilization. Elsevier 83-147. https://doi.org/10.1016/B1978-1010-1012-814837-814832.800004-814834

  77. Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147 (1):381–394. https://doi.org/10.1016/j.jhazmat.2007.1001.1021

  78. Puspitasari T, Ilmi MM, Nurdini N, Mukti RR, Radiman CL, Darwis D, Kadja GTM (2019) The physicochemical characteristics of natural zeolites governing the adsorption of Pb2+ from aqueous environment. Key Eng Mater 811:92–98. https://doi.org/10.4028/www.scientific.net/KEM.4811.4092

    Article  Google Scholar 

  79. Vassileva PS, Radoykova TH, Detcheva AK, Avramova IA, Aleksieva KI, Nenkova SK, Valchev IV, Mehandjiev DR (2016) Adsorption of Ag+ ions on hydrolyzed lignocellulosic materials based on willow, paulownia, wheat straw and maize stalks. Int j sci environ technol 13(5):1319–1328. https://doi.org/10.1007/s13762-13016-10970-y

    Article  CAS  Google Scholar 

  80. Araújo CST, Almeida ILS, Rezende HC, Marcionilio SMLdO, León JJL, Matos TN (2018) Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem J 137:348–354. https://doi.org/10.1016/j.microc.2017.1011.1009

    Article  Google Scholar 

  81. Ehrlich G (1963) Physical adsorption of gases: D.M. Young and A.D. Crowell: Butterworths, London (1962). 426 pp. 70s. J Phys Chem 24(9):1150. https://doi.org/10.1016/0022-3697(1163)90031-90033

  82. Bachmann SAL, Calvete T, Féris LA (2021) Caffeine removal from aqueous media by adsorption: an overview of adsorbents evolution and the kinetic, equilibrium and thermodynamic studies. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144229

    Article  PubMed  Google Scholar 

  83. Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35(5):1125–1134. https://doi.org/10.1016/S0043-1354(1100)00389-00384

    Article  CAS  PubMed  Google Scholar 

  84. Hamoudi SA, Hamdi B, Brendlé J (2018) Chapter 4.7 - Removal of ions Pb2+ and Cd2+ from aqueous solution by containment geomaterials. In: Dincer I, Colpan CO, Kizilkan O (eds) Exergetic, Energetic and Environmental Dimensions. Academic Press, pp 1029–1043. https://doi.org/10.1016/B1978-1020-1012-813734-813735.800058-813735

  85. Dhaouadi F, Sellaoui L, Chávez-González B, Elizabeth Reynel-Ávila H, Diaz-Muñoz LL, Mendoza-Castillo DI, Bonilla-Petriciolet A, Lima EC, Tapia-Picazo JC, Lamine AB (2021) Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127975

    Article  Google Scholar 

  86. Orumwense FFO (1996) Removal of lead from water by adsorption on a kaolinitic clay. J Chem Technol Biotechnol 65(4):363–369. https://doi.org/10.1002/(SICI)1097-4660(199604)199665:199604&gt199363::AID-JCTB199435&lt199603.199600.CO;199602-199603

  87. Yavuz Ö, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37(4):948–952. https://doi.org/10.1016/S0043-1354(1002)00409-00408

    Article  CAS  PubMed  Google Scholar 

  88. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93(1):1–9. https://doi.org/10.1016/j.hydromet.2008.1002.1009

    Article  CAS  Google Scholar 

  89. Barkat M, Nibou D, Amokrane S, Chegrouche S, Mellah A (2015) Uranium (VI) adsorption on synthesized 4A and P1 zeolites: equilibrium, kinetic, and thermodynamic studies. C R Chim 18(3):261–269. https://doi.org/10.1016/j.crci.2014.1009.1011

    Article  CAS  Google Scholar 

  90. Saha UK, Taniguchi S, Sakurai K (2001) Adsorption behavior of cadmium, zinc, and lead on hydroxyaluminum– and hydroxyaluminosilicate–montmorillonite complexes. Soil Sci Soc Am J 65(3):694–703

    Article  CAS  Google Scholar 

  91. Es-sahbany H, Hsissou R, El Hachimi ML, Allaoui M, Nkhili S, Elyoubi MS (2021) Investigation of the adsorption of heavy metals (Cu Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater Today: Proc 45:7290–7298. https://doi.org/10.1016/j.matpr.2020.7212.1100.10.1016/j.matpr.2020.12.1100

    Article  CAS  Google Scholar 

  92. Kong Q, Shi X, Ma W, Zhang F, Yu T, Zhao F, Zhao D, Wei C (2021) Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.125690

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhila Ait Hamoudi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamoudi, S.A., Khelifa, N., Nouri, L. et al. Removal of Pb2+ and Cd2+ by adsorption onto Y zeolite and its selectivity of retention in an actual contaminated effluent. Colloid Polym Sci 301, 631–645 (2023). https://doi.org/10.1007/s00396-023-05089-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05089-y

Keywords

Navigation