Skip to main content
Log in

Adsorption configuration of stearic acid onto calcium sulfate whisker

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The adsorption configuration of stearic acid onto calcium sulfate whisker is studied both computationally and experimentally. It is found experimentally that 8 stearic acids could be accommodated on the calcium sulfate whisker at the given conditions based on BET and TG analysis, and chemical binding between stearate ions and CSW is verified by IR analysis. However, the existing model St shows no adsorption when the number of stearic acids reaches 4. Therefore, we compare modified adsorption models > CaSt (> Ca denotes surface Ca) and CaSt2 with traditional St model by using simulation method. The simulation results show that > CaSt is the most stable adsorption model in terms of molecular structure and binding energy. As the addictive number rises up to 4, the St model and CaSt2 model show no adsorption and the binding energy of two cases becomes negative. Meanwhile, the binding energy is positive as the number reaches 8 in > CaSt model, which is more consistent with real process. Electrostatic force is found to contribute the most to adsorption, and stearic acid in form of stearate ion (St) shows higher water contact angels, which indicates stronger adsorption at higher pH and demonstrates the contribution of electrostatic interaction between St and Ca.

Graphical abstract

The adsorption of stearic acids onto calcium sulfate was investigated both computationally and experimentally to shed some light on the interface molecular structure. It turns out that compared with configuration of two stearic acids attached to one Ca (CaSt2), configuration of every single stearate ion attached to one Ca site(> CaSt) is the most stable one in terms of molecular arrangement and adsorption energy, which is more consistent with experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Osman MA, Suter UW (2002) Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer. Chem Mater 14(10):4408–4415. https://doi.org/10.1021/cm021222u

    Article  CAS  Google Scholar 

  2. Fu SY, Feng XQ, Lauke B, Mai YM (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  CAS  Google Scholar 

  3. Lin Y, Chen H, Chan CM, Wu J (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41(23):9204–9213. https://doi.org/10.1021/ma801095d

    Article  CAS  Google Scholar 

  4. Lazzeri A, Zebarjad SM, Pracella M, Cavalier K (2005) Filler toughening of plastics. Part 1—The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer 46(3):827–844. https://doi.org/10.1016/j.polymer.2004.11.111

    Article  CAS  Google Scholar 

  5. Jun Q, Shi W, Yang H, Liu J, Jie Yu, Lv Q, Tian Y (2013) Sonochemical activation calcium sulfate whisker with enhanced beta-nucleating ability for isotactic polypropylene. Colloid Polym Sci 291:2579–2587. https://doi.org/10.1007/s00396-013-3004-z

    Article  CAS  Google Scholar 

  6. Wang J, Fan S, Hou S, Chen R, Yang C (2019) Effects of cationic polyacrylamide on hydrothermal formation of ultralong α-CaSO4·0.5H2O whiskers. Cryst Res Technol 54(4):1800224. https://doi.org/10.1002/crat.201800224

    Article  CAS  Google Scholar 

  7. Chen HY, Wang J, Ma PY, Chen HY, Xiang L (2015) Influence of hydroxylation on fabrication of PVC/CaSO4 composite. Appl Surf Sci 357:2320–2326. https://doi.org/10.1016/j.apsusc.2015.09.234

    Article  CAS  Google Scholar 

  8. Hong TZ, Zhi H, Liu X, Wu L, Nai XY, Dong YP (2016) A novel surface modification method for anhydrite whisker. Mater Des 107(5):117–122. https://doi.org/10.1016/j.matdes.2016.06.034

    Article  CAS  Google Scholar 

  9. Zhu A, Cai A, Zhou W, Shi Z (2008) Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites. Appl Surf Sci 254(13):3745–3752. https://doi.org/10.1016/j.apsusc.2007.11.042

    Article  CAS  Google Scholar 

  10. Cui JY, Yang BC, Yuan WJ, Lv ZF, Xu SA (2016) Preparation of a crosslinked chitosan coated calcium sulfate whisker and its reinforcement in polyvinyl chloride. J Mater Sci Technol 32(8):745–752. https://doi.org/10.1016/j.jmst.2016.06.006

    Article  CAS  Google Scholar 

  11. Jeon CW, Park S, Bang JH, Chae S, Song K, Lee SW (2018) Nonpolar surface modification using fatty acids and its effect on calcite from mineral carbonation of desulfurized gypsum. Coatings 8(1):43. https://doi.org/10.3390/coatings8010043

    Article  CAS  Google Scholar 

  12. Murariu M, Ferreira ADS, Degée P, Alexandre M, Dubois P (2007) Polylactide compositions. Part 1: Effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer 48(9):2613–2618. https://doi.org/10.1016/j.polymer.2007.02.067

    Article  CAS  Google Scholar 

  13. Wang Y, Lee W (2010) Interfacial interactions in calcium carbonate–polypropylene composites. 2: Effect of compounding on the dispersion and the impact properties of surface-modified composites. Polym Compos 25(5):451–460. https://doi.org/10.1002/pc.20038

    Article  CAS  Google Scholar 

  14. Liu C, Zhao Q, Wang Y, Shi P, Jiang M (2016) Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl Surf Sci 360:263–269. https://doi.org/10.1016/j.apsusc.2015.11.032

    Article  CAS  Google Scholar 

  15. Ke W, Wu J, Lin Y, Zeng H (2003) Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Compos Part A Appl Sci Manuf 34(12):1199–1205. https://doi.org/10.1016/j.compositesa.2003.07.004

    Article  CAS  Google Scholar 

  16. Gilbert M, Sutherland I, Guest A (2000) Characterization of coated particulate fillers. J Mater Sci 35(2):391–397. https://doi.org/10.1023/A:1004759115462

    Article  CAS  Google Scholar 

  17. Shi X, Rosa R, Lazzeri A (2010) On the coating of precipitated calcium carbonate with stearic acid in aqueous medium. Langmuir 26(11):8474–8482. https://doi.org/10.1021/la904914h

    Article  CAS  PubMed  Google Scholar 

  18. Feng X, Zhang Y, Wang G, Shi L (2015) Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technol 271:1–6. https://doi.org/10.1016/j.powtec.2014.11.015

    Article  CAS  Google Scholar 

  19. Dang L, Nai XY, Zhu DH, Jing YW, Dong YP, Li W (2014) Study on the mechanism of surface modification of magnesium oxysulfate whisker. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2014.07.205

    Article  Google Scholar 

  20. Chen R, Hou S, Wang J, Xiang L (2017) Influence of alkyl trimethyl ammonium bromides on hydrothermal formation of α-CaSO4·0.5H2O whiskers with high aspect ratios. Curr Comput-Aided Drug Des 7(1):28. https://doi.org/10.3390/cryst7010028

    Article  CAS  Google Scholar 

  21. Fan H, Song X, Xu Y, Yu JG (2019) Insights into the modification for improving the surface property of calcium sulfate whisker: experimental and DFT simulation study. Appl Surf Sci 478:594–600. https://doi.org/10.1016/j.apsusc.2019.01.161

    Article  CAS  Google Scholar 

  22. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6):3468–3517. https://doi.org/10.3390/ma3063468

    Article  CAS  PubMed Central  Google Scholar 

  23. Kulkarni SA, Ogale SB, Vijayamohanan KP (2008) Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci 318(2):372–379. https://doi.org/10.1016/j.jcis.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Ding Y, Dong YJ, Liu YT, Ren X, Wang B, Gao CH (2020) Surface modification of calcium sulfate whisker using thiol‐ene click reaction and its application in reinforced silicone rubber. J Polym Sci 58(4). https://doi.org/10.1002/pol.20200016

  25. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  26. Loehle S, Matta C, Minfray C, Le Mogne T, lovine R, Obara Y, Miyamoto A, Martin JM, (2015) Mixed lubrication of steel by C18 fatty acids revisited. Part I: Toward the formation of carboxylate. Tribol Int 82:218–227. https://doi.org/10.1016/j.triboint.2014.10.020

    Article  CAS  Google Scholar 

  27. Parambathu AV, Wang L, Asthagiri D, Chapman W (2019) Apolar behavior of hydrated calcite (10–14) surface assists in naphthenic acid adsorption. Energy Fuels 33(7):6119–6125. https://doi.org/10.1021/acs.energyfuels.9b00877

    Article  CAS  Google Scholar 

  28. Loehlé S, Matta C, Minfray C, Mogne TL, Martin JM (2015) Mixed lubrication of steel by C18 fatty acids revisited. Part II: Influence of some key parameters. Tribol Int 94:207–216. https://doi.org/10.1016/j.triboint.2015.08.036

    Article  CAS  Google Scholar 

  29. Noubigh A (2019) Stearic acid solubility in mixed solvents of (water + ethanol) and (ethanol + ethyl acetate): experimental data and comparison among different thermodynamic models. J Mol Liq 296(15):112101. https://doi.org/10.1016/j.molliq.2019.112101

  30. Grosse I, Estel K (2000) Thin surfactant layers at the solid interface. Colloid Polym Sci 278(10):1000–1006. https://doi.org/10.1007/s003960000364

    Article  CAS  Google Scholar 

  31. Ylikantola A, Linnanto J, Knuutinen J, Toivakka M (2013) Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface. Appl Surf Sci 276:43–52. https://doi.org/10.1016/j.apsusc.2013.02.122

    Article  CAS  Google Scholar 

  32. Xin H, Hou SC, Xiang L, Yu YX (2015) Adsorption and substitution effects of Mg on the growth of calcium sulfate hemihydrate: an ab initio DFT study. Appl Surf Sci 357:1552–1557. https://doi.org/10.1016/j.apsusc.2015.09.223

    Article  CAS  Google Scholar 

  33. Zhao XX, Hu JH, Yang X, Chen XH, Chen XH (2016) Effects of anhydrites before and after modification as well as their contents on the thermal and mechanical properties of polyamide 6/anhydrite composites. Polym Compos 37(8):2360–2368. https://doi.org/10.1002/pc.23417

    Article  CAS  Google Scholar 

  34. Zeng JP, Dai Y, Shi WY, Shao JL, Sun GX (2015) Molecular dynamics simulation on the interaction between polymer inhibitors and anhydrite surface. Surf Interface Anal 47(9):896–902. https://doi.org/10.1016/j.molliq.2018.03.018

    Article  CAS  Google Scholar 

  35. Simic R, Kalin M (2013) Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Appl Surf Sci 283:460–470. https://doi.org/10.1016/j.apsusc.2013.06.131

    Article  CAS  Google Scholar 

  36. Austen KF, Wright K, Slater B, Gale JD (2005) The interaction of dolomite surfaces with metal impurities: a computer simulation study. Phys Chem Chem Phys 7(24):4150–4156. https://doi.org/10.1039/b510454h

    Article  CAS  PubMed  Google Scholar 

  37. Pohle WD (1941) Solubility of calcium soaps of gum rosin, rosin acids and fatty acids. Oil Soap 18(12):244–245. https://doi.org/10.1007/BF02544260

    Article  CAS  Google Scholar 

  38. Sarkar A, Mahapatra S (2014) Novel hydrophobic vaterite particles for oil removal and recovery. J Mater Chem A 11(2). https://doi.org/10.1039/c3ta14450j

  39. Al-Busaidi IK, Al-Maamari RS, Karimi M, Mahvash K, Naser J (2019) Effect of different polar organic compounds on wettability of calcite surfaces. J Pet Sci Eng 180:569–583. https://doi.org/10.1016/j.petrol.2019.05.080

    Article  CAS  Google Scholar 

  40. Yong L, Yu K, Zheng Q, Xie J, Wang TJ (2018) Thermal treatment to improve the hydrophobicity of ground CaCO3 particles modified with sodium stearate. Appl Surf Sci 436:832–838. https://doi.org/10.1016/j.apsusc.2017.12.023

    Article  CAS  Google Scholar 

  41. Gomari K, Hamouda AA, Denoyel R (2006) Influence of sulfate ions on the interaction between fatty acids and calcite surface. Colloids Surf A 287(1):29–35. https://doi.org/10.1016/j.colsurfa.2006.03.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Qiang Yu, Xingfu Song; methodology and analysis: Qiang Yu, Xingfu Song, Mengjie Luo; writing–original draft preparation: Qiang Yu, Xingfu Song, Mengjie Luo; writing–review and editing: Qiang Yu, Xingfu Song, Mengjie Luo; resources: Xingfu Song, Hang Chen, Chenglin Liu.

Corresponding authors

Correspondence to Mengjie Luo or Xingfu Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 495 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Luo, M., Chen, H. et al. Adsorption configuration of stearic acid onto calcium sulfate whisker. Colloid Polym Sci 300, 825–834 (2022). https://doi.org/10.1007/s00396-022-04984-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04984-0

Keywords

Navigation