Skip to main content
Log in

Wormlike micelles formed by ultra-long-chain nonionic surfactant

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2021

This article has been updated

Abstract

Wormlike micelles (WLMs) formed by different types of ultra-long-chain surfactants have been well studied except for nonionic ones. Here in this paper, a series of ultra-long-chain nonionic surfactants UCn-350 (n = 18, 22, 24) were synthesized by esterification, and their molecule structures were identified using 1H-NMR, 13C NMR, FT-IR, and GPC. The properties of UCn-350 solution, including the cloud point, critical micelle concentration (CMC), rheological behavior, and micellar microstructure, were systematically investigated. It was found that the aqueous solution properties of UCn-350 are highly dependent on their molecule structures. With lengthening the hydrophobic tail, their CMC values as well as the critical overlap concentration (C*) values of WLMs were decreased, and the viscoelastic micellar solution of entangled linear wormlike chains could be formed in pure water by single ultra-long-chain nonionic surfactant UCn-350, without the addition of any other compounds. The longer the hydrophobic tail is, the strongest the thickening ability is. Such viscoelastic fluids may be a good alternative for the delivery of functional ingredients in food or cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Feng Y, Chu Z, Dreiss CA (2015) Smart wormlike micelles: design, characteristics and applications. Springer, Berlin Heidelberg

    Book  Google Scholar 

  2. Zhang Y, Guo Z, Zhang J, Feng Y, Wang B, Wang J (2011) Smart wormlike micellar systems Prog Chem 23:2012–2020

    CAS  Google Scholar 

  3. Zana R, Kaler EW (eds) (2007) Giant micelles: properties and applictions, CRC Press. Taylor & Francis Group, New York

    Google Scholar 

  4. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Physc Condens Matter 2:6869–6892

  5. Maitland GC (2000) Oil and gas production. Curr Opin Colloid Interface Sci 5:301–311

    Article  CAS  Google Scholar 

  6. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Cheung P, Shen AQ (2014) Microfluidic flows of wormlike micellar solutions. Adv Colloid Interface Sci 211:34–46

    Article  CAS  PubMed  Google Scholar 

  8. Choi F, Chen RX, Acosta EJ (2020) Predicting the effect of additives on wormlike micelle and liquid crystal formation and rheology with phase inversion phenomena. J Colloid Interface Sci 564:216–229

    Article  CAS  PubMed  Google Scholar 

  9. Lee HJ, Kim HJ, Park DG, Jin KS, Chang JW, Lee HY (2020) Mechanism for transition of reverse cylindrical micelles to spherical micelles induced by diverse alcohols. Langmuir 36:8174–8183

    Article  CAS  PubMed  Google Scholar 

  10. Yin HY, Feng YJ, Li PX, Doutch J, Han YX, Mei YJ (2019) Cryogenic viscoelastic surfactant fluids: fabrication and application in a subzero environment. J Colloid Interface Sci 551:89–100

    Article  CAS  PubMed  Google Scholar 

  11. Yin HY, Feng YJ, Li PX, Doutch J, Han YX, Mei YJ (2019) Cryogenic wormlike micelles. Soft Matter 15:2511–2516

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Zhang Z, Liu X (2020) pH-responsive viscoelastic fluid formed by cleavable sodium hexadecyl phthalate monoester alone. J Mol Liq 313:113514

    Article  CAS  Google Scholar 

  13. Zhang Y, Chen Z, Zhao Y (2019) Viscoelastic micellar solution formed by a Se-based ionic liquid surfactant and its response to redox changes. Phys Chem Chem Phys 21:14734–14744

    Article  PubMed  Google Scholar 

  14. Croce V, Cosgrove T, Maitland G, Hughes T, Karlsson G (2003) Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir 19:8536–8541

    Article  CAS  Google Scholar 

  15. Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300–306

    Article  CAS  Google Scholar 

  16. Zhang Y, Feng Y (2015) CO2-induced smart viscoelastic fluids based on mixtures of sodium erucate and triethylamine. J Colloid Interface Sci 447:173–181

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Han Y, Chu Z, He S, Zhang J, Feng Y (2013) Thermally induced structural transitions from fluids to hydrogels with pH-switchable anionic wormlike micelles. J Colloid Interface Sci 394:319–328

    Article  CAS  PubMed  Google Scholar 

  18. Han Y, Feng Y, Sun H, Li Z, Han Y, Wang H (2011) Wormlike micelles formed by sodium erucate in the presence of a tetraalkylammonium hydrotrope. J Phys Chem B 115:6893–6902

    Article  CAS  PubMed  Google Scholar 

  19. Yang Z, He S, Fang Y, Zhang Y (2021) Viscoelastic fluid formed by ultralong-chain erucic acid—base ionic liquid surfactant responds to acid/alkaline, CO2, and light. J Agric Food Chem 69:3094–3102

    Article  CAS  PubMed  Google Scholar 

  20. Kumar R, Kalur GC, Ziserman L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23:12849–12856

    Article  CAS  PubMed  Google Scholar 

  21. Feng D, Zhang Y, Chen Q, Wang J, Li B, Feng Y (2012) Synthesis and surface activities of amidobetaine surfactants with ultra-long unsaturated hydrophobic chains. J Surfactants Deterg 15:657–661

    Article  CAS  Google Scholar 

  22. Chu Z, Feng Y, Su X, Han Y (2010) Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26:7783–7791

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, An P, Liu X (2015) “Worm”-containing viscoelastic fluid based on single amine oxide surfactant with an unsaturated C22-tail. RSC Adv 5:19135–19144

    Article  CAS  Google Scholar 

  24. Zhang Y, Luo Y, Wang Y, Zhang J, Feng Y (2013) Single-component wormlike micellar system formed by a carboxylbetaine surfactant with C22-saturated tail. Colloid Surf A-Physicochem Eng Asp 436:71–79

    Article  CAS  Google Scholar 

  25. Chu Z, Feng Y (2012) Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir 28:1175–1181

    Article  CAS  PubMed  Google Scholar 

  26. Fameau AL, Arnould A, Saint-Jalmes A (2014) Responsive self-assemblies based on fatty acids. Curr Opin Colloid Interface Sci 19:471–479

    Article  CAS  Google Scholar 

  27. Foley P, Pour AK, Beach ES, Zimmerman JB (2012) Derivation and synthesis of renewable surfactants. Chem Soc Rev 41:1499–1518

    Article  CAS  PubMed  Google Scholar 

  28. Kjellin M, Johansson I (2010) eds. Surfactants from renewable resources, John Wiley & Sons, Ltd, United Kingdom

  29. Moore JS, Stupp SI (1990) Room temperature polyesterification. Macromolecules 23:65–70

    Article  CAS  Google Scholar 

  30. Wang JX, Wang JY, Wang BQ, Guo SF, Feng YJ (2013) Synthesis and aqueous solution properties of polyoxyethylene surfactants with ultra-long unsaturated hydrophobic chains. J Dispersion Sci Technol 34:504–510

    Article  CAS  Google Scholar 

  31. Zhang Y, Kong W, An P, He S, Liu X (2016) CO2/pH-controllable viscoelastic nanostructured fluid based on stearic acid soap and bola-type quaternary ammonium salt. Langmuir 32:2311–2320

    Article  CAS  PubMed  Google Scholar 

  32. Rosen MJ (2004) ed. Surfactants and interfacial phenomena, John Wiley & Sons, Inc., Hoboken, New Jersey

  33. Schott H (1969) Hydrophile-lipophile balance and cloud points of nonionic surfactants. J Pharm Sci 58:1443–1449

    Article  CAS  PubMed  Google Scholar 

  34. Guo S, He S, Lu P, Zhang Y (2020) Effects of selenium atom on the solution properties of N-alkyl-N-methylpyrrolidinium bromide. J Mol Liq 303:112652

    Article  CAS  Google Scholar 

  35. He S, Xu B, Zhang Y (2019) Krafft temperature, criticalmMicelle concentration, and rheology of “pseudo-Gemini” surfactant comprising fatty acid soap and bola-type quaternary ammonium salt. J Surfactants Deterg 22:1269–1277

    Article  CAS  Google Scholar 

  36. Yoshimura T, Nyuta K, Esumi K (2005) Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups. 1. Adsorption and micellization. Langmuir 21:2682–2688

  37. Menger FM, Littau CA (1993) Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc 115:10083–10090

    Article  CAS  Google Scholar 

  38. Zhang Y, Qin F, Liu X, Fang Y (2018) Switching worm-based viscoelastic fluid by pH and redox. J Colloid Interface Sci 514:554–564

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Liu L, Liu X, Fang Y (2018) Reversibly switching wormlike micelles formed by selenium-containing surfactant and benzyl tertiary amine using CO2/N2 and redox reaction. Langmuir 34:2302–2311

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Yang C, Guo S, Chen H, Liu X (2016) Tandem triggering of wormlike micelles using CO2 and redox. Chem Commun 52:12717–12720

    Article  CAS  Google Scholar 

  41. Zhang Y, Feng Y, Wang Y, Li X (2013) CO2-switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 29:4187–4192

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Feng Y, Wang J, He S, Guo Z, Chu Z, Dreiss CA (2013) CO2-switchable wormlike micelles. Chem Commun 49:4902–4904

    Article  CAS  Google Scholar 

  43. Chu Z, Feng Y (2010) Amidosulfobetaine surfactant gels with shear banding transitions. Soft Matter 6:6065–6067

    Article  CAS  Google Scholar 

  44. Hoffmann H (1994) In Structure and flow in surfactant solutions, eds. C. A. Herb and R. K. Prud'homme, American Chemical Society, Washington, DC pp. 2–31. https://doi.org/10.1021/bk-1994-0578.ch001

  45. Khatory A, Lequeux F, Kern F, Candau SJ (1993) Linear and nonlinear viscoleasticity of semidilute solutions of wormlike micelles at high-salt content. Langmuir 9:1456–1464

    Article  CAS  Google Scholar 

  46. Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13:2227–2234

    Article  CAS  Google Scholar 

  47. Li J, Zhao M, Zheng L (2012) Salt-induced wormlike micelles formed by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution. Colloid Surf A-Physicochem Eng Asp 396:16–21

    Article  CAS  Google Scholar 

  48. Bernheim-Groswasser A, Wachtel E, Talmon Y (2000) Micellar growth, network formation, and criticality in aqueous solutions of the nonionic surfactant C12E5. Langmuir 16:4131–4140

    Article  CAS  Google Scholar 

  49. Jerke G, Pedersen JS, Egelhaaf SU, Schurtenberger P (1998) Flexibility of charged and uncharged polymer-like micelles. Langmuir 14:6013–6024

    Article  CAS  Google Scholar 

  50. Moitzi C, Freiberger N, Glatter O (2005) Viscoelastic wormlike micellar solutions made from nonionic surfactants: structural investigations by SANS and DLS. J Phys Chem B 109:16161–16168

    Article  CAS  PubMed  Google Scholar 

  51. Stradner A, Glatter O, Schurtenberger P (2000) A hexanol-induced sphere-to-flexible cylinder transition in aqueous alkyl polyglucoside solutions. Langmuir 16:5354–5364

    Article  CAS  Google Scholar 

  52. Afifi H, Karlsson G, Heenan RK, Dreiss CA (2012) Structural transitions in cholesterol-based wormlike micelles induced by encapsulating alkyl ester oils with varying architecture. J Colloid Interface Sci 378:125–134

    Article  CAS  PubMed  Google Scholar 

  53. Tehrani-Bagha A, Holmberg K (2007) Cleavable surfactants. Curr Opin Colloid Interface Sci 12:81–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from Natural Science Foundation of China (Nos. 21773161, 22072058), the Fundamental Research Funds for the Central Universities (JUSRP221020), and the Key Laboratory for Colloid and Interface Chemistry of the State Education Ministry at Shandong University (No. 200601) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongmin Zhang or Yujun Feng.

Ethics declarations

Conflict of interests

There authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, "Yujun Feng" should have been denoted as a corresponding author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2534 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Y., Chu, Z. et al. Wormlike micelles formed by ultra-long-chain nonionic surfactant. Colloid Polym Sci 299, 1295–1304 (2021). https://doi.org/10.1007/s00396-021-04848-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04848-z

Keywords

Navigation