Skip to main content
Log in

Spray-dried microparticles composed of carboxylated cellulose nanofiber and cysteamine and their oxidation-responsive release property

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

TEMPO-modified cellulose nanofiber (TM CNF) microparticles (MPs) incorporating cysteamine (CA) were prepared by a spray-drying method. MPs on SEM micrographs were flat wrinkled balls-like and less than 10 μm in diameter. The energy-dispersive X-ray spectroscopy, the elemental mapping, and the X-ray photon spectroscopy were performed to understand the content and the distribution of CA in the TM CNF MPs. FT-IR spectroscopy showed that the thiol groups of CA molecules contained in MPs were oxidized by the treatment of H2O2. According to DSC analysis, CA contained in the MPs exhibited the melting point at a lower temperature (ca. 50–53 °C) than free CA (ca. 69 °C). The volume mean diameter of the MPs was 12.1 to 13.8 μm. The release of FITC-dextran loaded in MPs was promoted when H2O2 solution was used as a release medium. The promoted release could be ascribed to the oxidization-induced reorientation of CA molecules and the subsequently occurring dislocation of TM CNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528. https://doi.org/10.1039/C3PY01192E

    Article  CAS  Google Scholar 

  2. Liu J, Pang Y, Huang W, Zhu Z, Zhu X, Zhou Y, Yan D (2011) Redox-responsive polyphosphate nanosized assemblies: a smart drug delivery platform for cancer therapy. Biomacromolecules 12(6):2407–2415. https://doi.org/10.1021/bm2005164

    Article  CAS  PubMed  Google Scholar 

  3. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204. https://doi.org/10.1016/j.jconrel.2007.12.017

    Article  CAS  PubMed  Google Scholar 

  4. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152(1):2–12. https://doi.org/10.1016/j.jconrel.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  5. Quinn JF, Whittaker MR, Davis TP (2017) Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 8(1):97–126. https://doi.org/10.1039/C6PY01365A

    Article  CAS  Google Scholar 

  6. Khorsand B, Lapointe G, Brett C, Oh JK (2013) Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules 14(6):2103–2111. https://doi.org/10.1021/bm4004805

    Article  CAS  PubMed  Google Scholar 

  7. Xu Z, Wang D, Xu S, Liu X, Zhang X, Zhang H (2014) Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem Asian J 9(1):199–205. https://doi.org/10.1002/asia.201301030

    Article  CAS  PubMed  Google Scholar 

  8. Ding J, Shi F, Xiao C, Lin L, Chen L, He C, Zhuang X, Chen X (2011) One-step preparation of reduction-responsive poly (ethylene glycol)-poly (amino acid) s nanogels as efficient intracellular drug delivery platforms. Polym Chem 2(12):2857–2864. https://doi.org/10.1039/C1PY00360G

    Article  CAS  Google Scholar 

  9. Sun H, Meng F, Cheng R, Deng C, Zhong Z (2014) Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 21(5):755–767. https://doi.org/10.1089/ars.2013.5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng R, Meng F, Ma S, Xu H, Liu H, Jing X, Zhong Z (2011) Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. J Mater Chem 21(47):19013–19020. https://doi.org/10.1039/C1JM13536H

    Article  CAS  Google Scholar 

  11. Huang Y, Ding X, Qi Y, Yu B, Xu FJ (2016) Reduction-responsive multifunctional hyperbranched polyaminoglycosides with excellent antibacterial activity, biocompatibility and gene transfection capability. Biomaterials 106:134–143. https://doi.org/10.1016/j.biomaterials.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  12. Kostiainen MA, Rosilo H (2009) Low-molecular-weight dendrons for DNA binding and release by reduction-triggered degradation of multivalent interactions. Chem Eur J 15(23):5656–5660. https://doi.org/10.1002/chem.200900420

    Article  CAS  PubMed  Google Scholar 

  13. Wohl BM, Engbersen JF (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158(1):2–14. https://doi.org/10.1016/j.jconrel.2011.08.035

    Article  CAS  PubMed  Google Scholar 

  14. Kim TH, Kwon K, Yoo DS, Lee SJ, Ma CJ, Ahn JH, Kim JC (2019) Monoolein cubic phase containing alginate/cystamine gel for controlled release of epidermal growth factor. J Dispers Sci Technol 40(1):119–127. https://doi.org/10.1080/01932691.2018.1467325

    Article  CAS  Google Scholar 

  15. Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, Liu Y, Ayyash D, Rasmussen J, Huo M, Shi J, Farokhzad OC (2017) ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater 29(33):1700141. https://doi.org/10.1002/adma.201700141

    Article  CAS  Google Scholar 

  16. Shim MS, Xia Y (2013) A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed 52(27):6926–6929. https://doi.org/10.1002/anie.201209633

    Article  CAS  Google Scholar 

  17. Griffiths HR (2005) ROS as signalling molecules in T cells–evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 10(6):273–280. https://doi.org/10.1179/135100005X83680

    Article  CAS  PubMed  Google Scholar 

  18. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58(1):39–46. https://doi.org/10.1016/j.biopha.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  19. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91(3):7–11. https://doi.org/10.1016/S0002-9149(02)03144-2

    Article  Google Scholar 

  20. Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procópio J, Morgan D, Oliveria-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583(1):9–24. https://doi.org/10.1113/jphysiol.2007.135871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110. https://doi.org/10.1016/j.drup.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  22. Xu Q, He C, Xiao C, Chen X (2016) Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci 16(5):635–646. https://doi.org/10.1002/mabi.201500440

    Article  CAS  PubMed  Google Scholar 

  23. Song CC, Du FS, Li ZC (2014) Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2(22):3413–3426. https://doi.org/10.1039/C3TB21725F

    Article  CAS  Google Scholar 

  24. Bertoni S, Liu Z, Correia A, Martins JP, Rahikkala A, Fontana F, Kemell M, Liu D, Albertini B, Passerini N, Li W, Santos HA (2018) pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv Funct Mater 28(50):1806175. https://doi.org/10.1002/adfm.201806175

    Article  CAS  Google Scholar 

  25. Fleisch TH, Zajac GW, Schreiner JO, Mains GJ (1986) An XPS study of the UV photoreduction of transition and noble metal oxides. Appl Surf Sci 26(4):488–497. https://doi.org/10.1016/0169-4332(86)90120-0

    Article  CAS  Google Scholar 

  26. Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353. https://doi.org/10.1021/bm101103p

    Article  CAS  PubMed  Google Scholar 

  27. Miao X, Lin J, Tian F, Li X, Bian F, Wang J (2016) Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohydr Polym 136:841–850. https://doi.org/10.1016/j.carbpol.2015.09.056

    Article  CAS  PubMed  Google Scholar 

  28. Lahiani-Skiba M, Boulet Y, Youm I, Bounoure F, Vérité P, Arnaud P, Skiba M (2007) Interaction between hydrophilic drug and α-cyclodextrins: physico-chemical aspects. J Incl Phenom Macrocycl Chem 57(1–4):211–217. https://doi.org/10.1007/s10847-006-9194-y

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07043439) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03025582). This study was supported by 2018 Research Grant (PoINT) from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chul Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H., Lee, SH. & Kim, JC. Spray-dried microparticles composed of carboxylated cellulose nanofiber and cysteamine and their oxidation-responsive release property. Colloid Polym Sci 298, 157–167 (2020). https://doi.org/10.1007/s00396-019-04591-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04591-6

Keywords

Navigation