Skip to main content
Log in

The immobilization of lanthanide (III) cations on a polymer containing quaternary ammonium nitrogen: influence of the temperature and pH, process kinetics

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The immobilization of lanthanide (III) cations on the Purolite A-400, a cross-linked polymer containing –R4N+ groups, was investigated. This type of polymers theoretically cannot retain metal cations from solutions. We assume that cations sorption on this polymer takes place due to the formation of jarosite mineral–type compounds. By increasing the temperature in the range of 0–60 °C, the cations sorption increases slightly but in the pH range of 2–6, it increases more considerable in the following order: La3+˂ Nd3+ ˂ Eu3+ ≈ Er3+. The sorption at 21 and 50 °C is adequately described by the pseudo-first-order (PFO) kinetic model, and the limiting step of the rate which decreases in order Er3+ ˃ Eu3+ ˃ Nd3+ ˃ La3+ is internal diffusion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kilbourn BT (1986) The role of the lanthanides in applied catalysis. J Less Common Metals 126:101–106

    Article  CAS  Google Scholar 

  2. Mikami K, Terada M, Matsuzawa H (2002) “Asymmetric” catalysis by lanthanide complexes. Angew Chem Int Ed 41:3554–3572

    Article  CAS  Google Scholar 

  3. Reddy AA, Goel A, Tulyaganov DU, Sardo M, Mafra L, Pascual MJ, Kharton VV, Tsipis EV, Kolotyginaf VA, Ferreira JMF (2014) Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for solid oxide fuel cells. J Mater Chem A 2:1834–1846

    Article  CAS  Google Scholar 

  4. Denkewicz Jr RP. Senderov EE, Grenier JW,Souza T. Lanthanide halide water treatment compositions and methods. US Patent 6,312,604

  5. Aime S, Botta M, Fasano M, Terreno E (1988) Lanthanide (iii) chelates for NMR biomedical applications. Chem Soc Rev 27:19–29. https://doi.org/10.1039/A827019Z

    Article  Google Scholar 

  6. Faulkner S, Pope SJA, Burton-Pye BP (2005) Lanthanide complexes for luminescence, imaging applications. Appl Spectrosc Rev 40:1–31

    Article  CAS  Google Scholar 

  7. Marhol M (1985) Ion exchangers in analytical chemistry. Мир, Moscow

    Google Scholar 

  8. Ikeda A, Suzuki T, Aida M, Fujii Y, Mitsugashira T, MitsuoHara MO (2005) A novel chromatographic separation technique using tertiary pyridine resin for the partitioning of trivalent actinides and lanthanides. Prog Nucl Energ 47(1–4):454–461

    Article  CAS  Google Scholar 

  9. Suzuki T, Fujii Y, Koyama S-i, Ozawa M (2008) Nuclide separation from spent nuclear fuels by using tertiary pyridine resin. Prog Nucl Energ 50(2–6):456–461

    Article  Google Scholar 

  10. Alakhras F (2018) Kinetic studies on the removal of some lanthanide ions from aqueous solutions using amidoxime-hydroxamic acid polymer. J Analyt Meth Chem:4058503, 7 pages. https://doi.org/10.1155/2018/4058503

    Article  Google Scholar 

  11. Choppin GR, Dinius RH (1962) Ion-exchange studies of the lanthanides and actinides in concentrated mineral acids. Inorg Chem 1:140–145

    Article  CAS  Google Scholar 

  12. Papkova MV, Konkova TV, Mikhailichenko AI, Tumanov VV, Saikina OY (2015) Sorption extraction of lanthanium, yttrium, ytterbium from solutions of mineral acids by sulfonic cation exchanger KU-2. Sorption and chromatographic processes 15(4):280–288 (in Russian)

  13. Papkova M V (2016) Sorption extraction of rare-earth metals from extraction with phosphoric acid. Thesis for the degree of candidate of technical sciences. Moscow. Mendeleev Russian University of Chemical Technology (in Russian)

  14. Hulet EK, Gutmacher RG, Coops MS (1961) Group separation of the actinides from the lanthanides by anion exchange. J Inorg Nucl Chem 17:350–360

    Article  CAS  Google Scholar 

  15. Gutsanu V, Gafiichuk V, Turta C, Shofranscky V (2006) Nature of compounds formed in phase of strongly basic anion exchanger in contact with Fe2(SO4)3 solutions. J App Polym Sci 99:39–64

    Article  Google Scholar 

  16. Drutsa R, Gutsanu V, Rusu V (2006) Sorption of Cr (III)-containing cations on strongly basic anion exchangers. J App Polym Sci 102:3978–3985

    Article  CAS  Google Scholar 

  17. Gutsanu V, Drutsa R (2003) Process for modification with Al (III) compounds of reticulate ionogenic polymers containing R4N+ groups. Patent MD 2234. BOPI, 8: 21

  18. Gutsanu V, Schitco C, Lisa G, Turta C (2011) Ultra dispersed particles of Fe (III) compounds in the strongly basic cross-linked ionic polymer-precursors for new sorbents and catalysts. Mater Chem Phys 130:853–861

    Article  CAS  Google Scholar 

  19. Gutsanu V, Tudorachi N, Lisa G (2013) The behavior of the AV-17(Cr) in various media. Termochim Acta 574:109–115

    Article  CAS  Google Scholar 

  20. Gutsanu V, Bulicanu V (2014) Removal of nitrate/nitrite ions by modified with metal-containing compounds strongly basic exchanger using response surface methodology. Ion Exch Let 7:1–5

    CAS  Google Scholar 

  21. Gutsanu V, Plahina I (2016) Cr(III)-containing composite for selective sorption of ammonium ions from solutions. IJIRSET 5:10972–10987. https://doi.org/10.15680/IJIRSET.2015.0506256

    Article  Google Scholar 

  22. Archipenco KB, Deviatkina ET, Palchik NA (1987) Crystallochemical particularities of synthetic jarosite. Nauka, Novosibirsk

  23. Gutsanu V (2015) Ionic-molecular constructions in the polymer phase – a new way to obtain different materials with selective properties. IJIRSET 4:8989–9001. https://doi.org/10.15680/IJIRSET.2015.0409099

    Article  Google Scholar 

  24. Lurie AA (1972) Sorbents and chromatographic carriers. Nauka, Moscow

    Google Scholar 

  25. Marchenko Z (1972) Photometrical determination of elements. Mir, Moscow

    Google Scholar 

  26. Gutsanu V, Drutsa R (2003) The process of regeneration of the strongly basic anion exchanger modified with Fe (III). Patent MD 2235. BOPI, 8:23

  27. Gutsanu V (2018) Chemical-mineralogical systems that are able to generate nitrogen compounds on Earth and even Mars. ACS Earth Space Chem 2:340–346

    Article  CAS  Google Scholar 

  28. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Separ Purif Methods 29:189–232

    Article  CAS  Google Scholar 

  29. Cheung HW, Ng JCY, McKay G (2003) Kinetic analysis of the sorption of copper (II) ions on chitosan. J Chem Technol Biotechnol 78:562–571

    Article  CAS  Google Scholar 

  30. Helfferich F (1962) Ion Exchangers. Izd In Lit, Moscow

    Google Scholar 

  31. Weber JW, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civil Eng 89:31–60

    Google Scholar 

  32. Fishtic IF, Vataman II (1988) Thermodynamics of the metallic ions hydrolysis. Stiinta, Chisinau

    Google Scholar 

  33. Martelli F, Abadie S, Simonin J-P, Vuilleumier R, Spezia R (2013) Lanthanoide (III) and actinoids (III) in water: diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations. Pure Appl Chem 85:237–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Ph. D Lilia Anghel for providing language help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Gutsanu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsanu, V., Grecu, C. The immobilization of lanthanide (III) cations on a polymer containing quaternary ammonium nitrogen: influence of the temperature and pH, process kinetics. Colloid Polym Sci 298, 59–65 (2020). https://doi.org/10.1007/s00396-019-04584-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04584-5

Keywords

Navigation