Skip to main content

Advertisement

Log in

Statistical viscoelastic and fracture mechanical properties of gel-cast ultra-oriented high-strength film threads of ultra-high-molecular-weight polyethylene

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

For the first time, the statistical distribution of Young’s modulus and of strain at break of ultra-high-molecular-weight polyethylene (UHMWPE) gel-cast highly oriented film threads have been investigated by employing the Weibull model. These have been produced by the multi-stage hot-zone drawing technique. It has been shown that the results of a large number of mechanical measurements for the two series of UHMWPE film threads drawn to an ultimate draw ratio (λ) of 120 from xerogels formed from 1.5% solutions of UHMWPE in decalin or paraffin oil (50 samples in each case) can be satisfactorily described in the framework of the standard Weibull distribution. The values of Weibull modulus and scale factor have been estimated for the two film threads series investigated. It has been found that the scatter in the experimental data depends on the solvent nature and the mechanical characteristic analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marikhin VA, Myasnikova LP (1996) Structural basis of high-strength high-modulus polymers. In: Fakirov S (ed) Oriented polymer materials. Hüthig & Wepf Verlag-Zug, Heidelberg, pp 38–98

    Chapter  Google Scholar 

  2. Zhurkov SN (1965) Kinetic concept of the strength of solids. Int J Fract Mech 1:311–323

    CAS  Google Scholar 

  3. Boiko YM, Marikhin VA, Myasnikova LP, Moskalyuk OA, Radovanova EI (2017) Weibull statistics of tensile strength distribution of gel-cast ultra-oriented film threads of ultra-high-molecular-weight polyethylene. J Mater Sci 52:1727–1735. https://doi.org/10.1007/s10853-016-0464-9

    Article  CAS  Google Scholar 

  4. Marissen R, Wienke D, Homminga R, Bosman R, Veka KM, Huguet A (2016) Weibull statistics strength investigation of synthetic link chains made from ultra-strong polyethylene fibers. Mater Sci Appl 7:238–246. https://doi.org/10.4236/msa.2016.75024

    Article  CAS  Google Scholar 

  5. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  6. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Compos A Appl Sci Manuf 57:88–94. https://doi.org/10.1016/jcompositesa.2013.11.007

    Article  CAS  Google Scholar 

  7. Baikova LG, Pesina TI, Kireenko MF, Tikhonova LV, Kurkjian CR (2015) Strength of optical silica fibres measured in liquid nitrogen. Tech Phys 60:869–872. https://doi.org/10.1134/S1063784215060031

    Article  CAS  Google Scholar 

  8. Wilson DM (1997) Statistical tensile strength of NextelTM 610 and NextelTM 720 fibres. J Mater Sci 32:2535–2542. https://doi.org/10.1023/A:1018538030985

    Article  CAS  Google Scholar 

  9. Sun G, Pang JHL, Zhou J, Zhang Y, Zhan Z, Zheng L (2012) A modified Weibull model for tensile strength distribution of carbon nanotube fibres with strain rate and size effects. Appl Phys Lett 101:131905. https://doi.org/10.1063/1.4754709

    Article  CAS  Google Scholar 

  10. Sullivan JD, Lauzon PH (1986) Experimental probability estimators for Weibull plots. J Mater Sci Lett 5:1245–1247. https://doi.org/10.1007/BF01729379

    Article  Google Scholar 

  11. Gurvich MR, Dibenedetto AT, Pegoretti A (1997) Evaluation of the statistical parameters of a Weibull distribution. J Mater Sci 32:3711–3716. https://doi.org/10.1023/A:1018603118573

    Article  CAS  Google Scholar 

  12. Pugno NM, Ruoff RS (2007) Nanoscale Weibull statistics for nanofibres and nanotubes. J Aerosp Eng 20:97–101. https://doi.org/10.1063/1.2158491

    Article  CAS  Google Scholar 

  13. Van der Zwaag S (1989) The concept of filament strength and the Weibull modulus. J Test Eval 17:292–298. https://doi.org/10.1520/JTE11131J

    Article  Google Scholar 

  14. Bergman B (1984) On the estimation of the Weibull modulus. J Mater Sci Lett 3:689–692. https://doi.org/10.1007/BF00719924

    Article  CAS  Google Scholar 

  15. Trustrum K, Jayatilaka ADS (1979) On estimating the Weibull modulus for a brittle material. J Mater Sci 14:1080–1084. https://doi.org/10.1007/BF00561290

    Article  Google Scholar 

  16. Klein CA (2007) Characteristic tensile strength and Weibull shape parameter of carbon nanotubes. J Appl Phys 101:124909. https://doi.org/10.1063/1.2749337

    Article  CAS  Google Scholar 

  17. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. https://doi.org/10.1016/j.compscitech.2009.09.013

    Article  CAS  Google Scholar 

  18. Zhang Y, Wang X, Pan N, Postle R (2002) Weibull analysis of the tensile behavior of fibres with geometrical irregularities. J Mater Sci 37:1401–1406. https://doi.org/10.1023/A:1014580814803

    Article  CAS  Google Scholar 

  19. Wu HF, Netravali AN (1992) Weibull analysis of strength-length relationships in single Nicalon SiC fibres. J Mater Sci 27:3318–3324. https://doi.org/10.1007/BF01116031

    Article  CAS  Google Scholar 

  20. Bazant ZP, Le J-L, Bazant MZ (2009) Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics. Proc Natl Acad Sci U S A 106:11484–11489. https://doi.org/10.1073/pnas.0904797106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bazant ZP, Pang S-D (2006) Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors. Proc Natl Acad Sci U S A 103:9434–9439. https://doi.org/10.1073/pnas.0602684103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barber AH, Andrews R, Shaudler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87:203106. https://doi.org/10.1063/1.2130713

    Article  CAS  Google Scholar 

  23. Roy A, Chakraborty S, Kundu SP, Basak RK, Majumber SB, Adhikari B (2012) Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 107:222–228. https://doi.org/10.1016/j.biortech.2011.11.073

    Article  CAS  PubMed  Google Scholar 

  24. Jayatilaka ADeS, Trustrum K (1977) Statistical approach to brittle fracture. J Mater Sci 12:1426–1430. https://doi.org/10.1007/BF00540858

    Article  Google Scholar 

  25. Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 26:135–147. https://doi.org/10.1016/j.dental.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  26. Wang F, Shao J (2014) Modified Weibull distribution for analyzing the tensile strength of bamboo fibers. Polymers 6:3005–3018. https://doi.org/10.3390/polym6123005

    Article  CAS  Google Scholar 

  27. Pang S-D, Bazant ZP, Le J-L (2008) Statistics of strength of ceramics: finite weakest-link model and necessity of zero threshold. Int J Fract 154:131–145. https://doi.org/10.1007/s10704-009-9317-8

    Article  CAS  Google Scholar 

  28. Boiko YM (2017) Weibull statistics of lap-shear strength development at partially self-healed polymer-polymer interfaces: a long-term contact. Colloid Polym Sci 295:1993–1999. https://doi.org/10.1007/s00396-017-4174-x

    Article  CAS  Google Scholar 

  29. Boiko YM (2017) Weibull statistics of lap-shear strength development at partially self-healed polymer-polymer interfaces: a short-term contact. Colloid Polym Sci 295:647–653. https://doi.org/10.1007/s00396-017-4048-2

    Article  CAS  Google Scholar 

  30. Boiko YM (2016) Statistics of strength distribution upon the start of adhesion between glassy polymers. Colloid Polym Sci 294:1727–1732. https://doi.org/10.1007/s00396-016-3934-3

    Article  CAS  Google Scholar 

  31. Zok FW (2017) On weakest link theory and Weibull statistics. J Am Ceram Soc 100:1265–1268. https://doi.org/10.1111/jace.14665

    Article  CAS  Google Scholar 

  32. Rastogi S, Yao Y, Ronca S, Bos J, van der Eem J (2011) Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route. Macromolecules 44:5558–5568. https://doi.org/10.1021/ma200667m

    Article  CAS  Google Scholar 

  33. Boiko YM, Kovriga VV (1993) Relaxation behavior of polyethylene oriented by various techniques. Int J Polym Mater 22:209–217. https://doi.org/10.1080/00914039308012076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. O.A. Moskalyuk for the help with mechanical measurements.

Funding

This work was supported in part by the Federal Agency of Scientific Organizations of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Boiko.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, Y.M., Marikhin, V.A., Myasnikova, L.P. et al. Statistical viscoelastic and fracture mechanical properties of gel-cast ultra-oriented high-strength film threads of ultra-high-molecular-weight polyethylene. Colloid Polym Sci 296, 1651–1656 (2018). https://doi.org/10.1007/s00396-018-4384-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4384-x

Keywords

Navigation