Skip to main content
Log in

Design and synthesis of multi-functional silsesquioxane nanoparticles having two distinct optoelectronic functionalities

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Multi-functional silsesquioxane nanoparticles (SQ-NPs) having two distinct optoelectronic functionalities on a single arm were prepared using a thiol-epoxy click reaction followed by esterification. The epoxy-functionalized SQ-NPs were prepared from commercially available (3-glycidyloxypropyl)triethoxysilane and were employed in the thiol-epoxy click reaction to introduce aromatic and heterocyclic thiol compounds, such as naphthalenethiol, 2-mercapto-1-methylimidazole, and 4,5-diphenyl-2-oxazolethiol. The resulting hydroxyl-functionalized SQ-NPs were further functionalized via esterification to incorporate a second functional group. The X-ray diffraction (XRD), size-exclusion chromatography (SEC), and scanning force microscopy (SFM) results indicated the formation of SQ-NPs (< 5 nm) with relatively narrow size distributions and no aggregation. Multi-functional SQ-NPs containing peripheral electron-accepting benzothiazole moieties were also synthesized using 2-mercaptobenzothiazole. The resulting SQ-NPs showed good solubility, high refractive indices (1.55–1.62), high thermal stability (Td5 > 300 °C), and characteristic optoelectronic properties with a wide range of Stokes shifts (5200–12,000 cm−1). The optoelectronic properties of the multi-functional SQ-NPs could be controlled by modifying the structure of the two distinct functional groups, which could be easily tuned by varying the structure of the thiol compounds and acid chloride derivatives in the feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

  2. Gunawidjaja R, Huang F, Gumenna M, Klimenko N, Nunnery GA, Shevchenko V, Tannenbaum R, Tsukruk VV (2009) Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir 25:1196–1209

  3. Perez-Ojeda ME, Trastoy B, Rol A, Chiara MD, Garcia-Moreno I, Chiara JL (2013) Controlled click-assembly of well-defined hetero-bifunctional cubic silsesquioxanes and their application in targeted bioimaging. Chem Eur J 19:6630–6640

    Article  CAS  Google Scholar 

  4. Olivero F, Reno F, Carniato F, Rizzi M, Cannas M, Marchese L (2012) A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Trans 41:7467–7473

    Article  CAS  Google Scholar 

  5. Yang X, Froehlich JD, Chae HS, Li S, Mochizuki A, Jabbour GE (2009) Efficient light-emitting devices based on phosphorescent polyhedral oligomeric silsesquioxane materials. Adv Funct Mater 19:2623–2629

    Article  CAS  Google Scholar 

  6. Liu D, Yu B, Jiang X, Yin J (2013) Responsive hybrid microcapsules by the one-step interfacial thiol-ene photopolymerization. Langmuir 29:5307–5314

    Article  CAS  Google Scholar 

  7. Mori H, Sada C, Konno T, Koizumi R, Yonetake K (2012) Film-forming amphiphilic silsesquioxane hybrids prepared by hydrolytic co-condensation of hydroxyl-functionalized and fluorinated triethoxysilanes. Polymer 53:3849–3860

    Article  CAS  Google Scholar 

  8. Li Y, Guo K, Su H, Li X, Feng X, Wang Z, Zhang W, Zhu S, Wesdemiotis C, Cheng SZD, Zhang WB (2014) Tuning “thiol-ene” reactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes. Chem Sci 5:1046–1053

    Article  CAS  Google Scholar 

  9. Koizumi R, Kimura T, Nakabayashi K, Mori H (2017) Amphiphilic silsesquioxane nanoparticles by hydrolytic condensation of Y-shaped triethoxysilanes having hydroxyl and fluoroalkyl groups: synthesis, self-assembly, and surface properties. Polymer 110:260–272

    Article  CAS  Google Scholar 

  10. Kimura T, Sobu S, Nakabayashi K, Mori H (2017) Dual-functional fluorinated-thiolated silsesquioxane nanoparticles for UV nanoimprinting via thiol-ene chemistry. Polymer 122:60–70

    Article  CAS  Google Scholar 

  11. Takeuchi H, Konno T, Mori H (2017) Synthesis of multifunctional silsesquioxane nanoparticles with hydroxyl and polymerizable groups for UV-curable hybrid coating. React Funct Polym 115:43–52

    Article  CAS  Google Scholar 

  12. Shibasaki S, Sasaki Y, Nakabayashi K, Mori H (2016) Synthesis and metal complexation of dual-functionalized silsesquioxane nanoparticles by sequential thiol-epoxy click and esterification reactions. React Funct Polym 107:11–19

    Article  CAS  Google Scholar 

  13. De S, Khan A (2012) Efficient synthesis of multifunctional polymers via thiol-epoxy "click" chemistry. Chem Commun 48:3130–3132

    Article  CAS  Google Scholar 

  14. Gadwal I, Stuparu MC, Khan A (2015) Homopolymer bifunctionalization through sequential thiol–epoxy and esterification reactions: an optimization, quantification, and structural elucidation study. Polym Chem 6:1393–1404

    Article  CAS  Google Scholar 

  15. De S, Stelzer C, Khan A (2012) A general synthetic strategy to prepare poly(ethylene glycol)-based multifunctional copolymers. Polym Chem 3:2342–2345

    Article  CAS  Google Scholar 

  16. Binder S, Gadwal I, Bielmann A, Khan A (2014) Thiol-epoxy polymerization via an AB monomer: synthetic access to high molecular weight poly(beta-hydroxythio-ether)s. J Polym Sci A Polym Chem 52:2040–2046

    Article  CAS  Google Scholar 

  17. Braendle A, Khan A (2012) Thiol-epoxy ‘click’ polymerization: efficient construction of reactive and functional polymers. Polym Chem 3:3224–3227

    Article  CAS  Google Scholar 

  18. Gadwal I, Khan A (2013) Protecting-group-free synthesis of chain-end multifunctional polymers by combining ATRP with thiol-epoxy ‘click’ chemistry. Polym Chem 4:2440–2444

    Article  CAS  Google Scholar 

  19. Gadwal I, Khan A (2015) Multiply functionalized dendrimers: protective-group-free synthesis through sequential thiolepoxy 'click' chemistry and esterification reaction. RSC Adv 5:43961–43964

    Article  CAS  Google Scholar 

  20. Gadwal I, Binder S, Stuparu MC, Khan A (2014) Dual-reactive hyperbranched polymer synthesis through proton transfer polymerization of thiol and epoxide groups. Macromolecules 47:5070–5080

    Article  CAS  Google Scholar 

  21. Li S, Han J, Gao C (2013) High-density and hetero-functional group engineering of segmented hyperbranched polymers via click chemistry. Polym Chem 4:1774–1787

    Article  CAS  Google Scholar 

  22. Jian Y, He Y, Sun Y, Yang H, Yang W, Nie J (2013) Thiol-epoxy/thiol-acrylate hybrid materials synthesized by photopolymerization. J Mater Chem C 1:4481–4489

    Article  CAS  Google Scholar 

  23. Lin H, Ou J, Liu Z, Wang H, Dong J, Zou H (2015) Thiol-epoxy click polymerization for preparation of polymeric monoliths with well-defined 3D framework for capillary liquid chromatography. Anal Chem 87:3476–3483

    Article  CAS  Google Scholar 

  24. Lin H, Chen L, Ou J, Liu Z, Wang H, Dong J, Zou H (2015) Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography. J Chromatogr A 1416:74–82

    Article  CAS  Google Scholar 

  25. Mazurek P, Daugaard AE, Skolimowski M, Hvilsted S, Skov AL (2015) Preparing mono-dispersed liquid core PDMS microcapsules from thiol-ene-epoxy-tailored flow-focusing microfluidic devices. RSC Adv 5:15379–15386

    Article  CAS  Google Scholar 

  26. Ware T, Simon D, Hearon K, Kang TH, Maitland DJ, Voit W (2013) Thiol-click chemistries for responsive neural interfaces. Macromol Biosci 13:1640–1647

    Article  CAS  Google Scholar 

  27. Biggs CI, Packer C, Hindmarsh S, Walker M, Wilson NR, Rourke JP, Gibson MI (2017) Impact of sequential surface-modification of graphene oxide on ice nucleation. Phys Chem Chem Phys 19:21929–21932

    Article  CAS  Google Scholar 

  28. Acar SB, Ozcelik M, Uyar T, Tasdelen MA (2017) Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry. Iran Polym J 26:405–411

    Article  Google Scholar 

  29. Toyooka T, Chokshi H, Carlson R, GivensI R, Lunte S (1993) Oxazole-based tagging reagents for analysis of secondary-amines and thiols by liquid-chromatography with fluorescence detection. Analyst 118:257–263

    Article  CAS  Google Scholar 

  30. Zhang L, Xu Q, Lu J, Xia X, Wang L (2007) ATRP of MMA initiated by 2-bromomethyl-4,5-diphenyloxazole at room temperature and study of fluorescent property. Eur Polym J 43:2718–2724

    Article  CAS  Google Scholar 

  31. Xing Z-H, Zhuang J-Y, Xu X-P, Ji S-J, Su W-M, Cui Z (2017) Novel oxazole-based emitters for high efficiency fluorescent OLEDs: synthesis, characterization, and optoelectronic properties. Tetrahedron 73:2036–2042

    Article  CAS  Google Scholar 

  32. Wang Y, Wei Y, Dong C (2006) Study on the interaction of 3,3-bis(4-hydroxy-1-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy. J Photochem Photobiol A Chem 177:6–11

    Article  CAS  Google Scholar 

  33. Saltiel J, Sears D, Choi J, Sun Y, Eaker D (1994) Fluorescence, fluorescence excitation, and ultraviolet-absorption spectra of trans-1-(2-naphthyl)-2-phenylethene conformers. J Phys Chem 98:35–46

    Article  CAS  Google Scholar 

  34. Singh RB, Mahanta S, Bagchi A, Guchhait N (2009) Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid: an extrinsic fluorescence probe for studying protein micro-environment. Photochem Photobiol Sci 8:101–110

    Article  CAS  Google Scholar 

  35. Lin Y, Fan H, Li Y, Zhan X (2012) Thiazole-based organic semiconductors for organic electronics. Adv Mater 24:3087–3106

    Article  CAS  Google Scholar 

  36. Sheen Y-C, Lu C-H, Huang C-F, Kuo S-W, Chang F-C (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024

    Article  CAS  Google Scholar 

  37. Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109

  38. Liu C, Liu Y, Shen Z, Xie P, Dai D, Zhang R, He C, Chung T (2001) Synthesis and characterization of novel alcohol-soluble ladderlike poly(silsesquioxane)s containing side-chain hydroxy groups. Macromol Chem Phys 202:1576–1580

    Article  CAS  Google Scholar 

  39. Liu J-G, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19:8907–8919

    Article  CAS  Google Scholar 

  40. Lu C, Yang B (2009) High refractive index organic-inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901

    Article  Google Scholar 

  41. Mori H, Takahashi K, Koizumi R, Ohmori K, Hidaka M (2013) Sulfur-containing silsesquioxane hybrids with high refractive index and high abbe number. Colloid Polym Sci 291:1085–1094

    Article  CAS  Google Scholar 

  42. Choi J-K, Lee D-H, Rhee S-K, Jeong H-D (2010) Observation of tunable refractive indices and strong intermolecular interactions in newly synthesized methylene-biphenylene-bridged silsesquioxane thin films. J Phys Chem C 144:14233–14239

  43. Tanaka K, Yamane H, Mitamura K, Watase S, Matsukawa K, Chujo Y (2014) Transformation of sulfur to organic-inorganic hybrids employed by POSS networks and their application for the modulation of refractive indices. J Polym Sci A Polym Chem 52:2588–2595

    Article  CAS  Google Scholar 

  44. Chen Y-H, Lin L-Y, Lu C-W, Lin F, Huang Z-Y, Lin H-W, Wang PH, Liu YH, Wong KT, Wen J, Miller DJ, Darling SB (2012) Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. J Am Chem Soc 134:13616–13623

    Article  CAS  Google Scholar 

  45. Kato S-I, Matsumoto T, Shigeiwa M, Gorohmaru H, Maeda S, Ishi-i T et al (2006) Novel 2,1,3-Benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. Chem A Eur J 3:2303–2317

    Article  Google Scholar 

  46. Alfonso M, Espinosa A, Tárraga A, Molina P (2014) Multifunctional benzothiadiazole-based small molecules displaying solvatochromism and sensing properties toward nitroarenes, anions, and cations. Chem Open 3:242–249

  47. Neto BAD, Lapis AAM, da Silva Júnior EN, Dupont J (2013) 2,1,3-Benzothiadiazole and derivatives: synthesis, properties, reactions, and applications in light technology of small molecules. Eur J Org Chem 2013:228–255

  48. Sonar P, Singh SP, Leclere P, Surin M, Lazzaroni R, Lin TT et al (2009) Synthesis, characterization and comparative study of thiophene-benzothiadiazole based donor-acceptor-donor (D-A-D) materials. J Mater Chem 19:3228–3237

    Article  CAS  Google Scholar 

  49. Zhang M, Tsao HN, Pisula W, Yang C, Mishra AK, Müllen K (2007) Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. J Am Chem Soc 129:3472–3473

    Article  CAS  Google Scholar 

  50. Liu X, Hsu BBY, Sun Y, Mai C-K, Heeger AJ, Bazan GC (2014) High thermal stability solution-processable narrow-band gap molecular semiconductors. J Am Chem Soc 136:16144–16147

  51. Pina J, JSd M, Breusov D, Scherf U (2013) Donor–acceptor–donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies. Phys Chem Chem Phys 15:15204–15213

    Article  CAS  Google Scholar 

  52. Fu B, Baltazar J, Hu Z, Chien A-T, Kumar S, Henderson CL, Collard DM, Reichmanis E (2012) High charge carrier mobility, low band gap donor−acceptor benzothiadiazole-oligothiophene based polymeric semiconductors. Chem Mater 24:4123–4133

Download references

Funding

There was no financial support obtained for the reported work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Mori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, Y., Shibasaki, S., Lo, CT. et al. Design and synthesis of multi-functional silsesquioxane nanoparticles having two distinct optoelectronic functionalities. Colloid Polym Sci 296, 1017–1028 (2018). https://doi.org/10.1007/s00396-018-4320-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4320-0

Keywords

Navigation