Skip to main content
Log in

New mechanism and correlation for degradation of drag-reducing agents in turbulent flow with measured data from a double-gap rheometer

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Flow drag reduction with polymer additives has been studied and applied for many years. But degradation of the drag-reducing agent (DRA) is still not well understood. In this study, a new theory for the mechanism of DRA degradation is proposed: the degradation of polymers in flow drag reduction process is a first-order chemical reaction based on the molecular weight. A modified Arrhenius equation can be used to predict the chemical reaction constant. This brings physicochemical meaning to the previously empirical degradation coefficient k in existing correlations. We then conduct a series of flow drag reduction experiments with PEO (polyethylene oxide) of three different molecular weights in a double-gap rheometer to investigate the degradation phenomena. A new correlation is developed to predict the lifespan of DRAs. Predictions with this correlation agree with measured data with an average relative error of 15%, better than previous correlations. The results indicate validity of the proposed new mechanism of DRA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Reis LG, Oliveira IP, Pires RV, Lucas EF (2016) Influence of structure and composition of poly (acrylamide-g-propylene oxide) copolymers on drag reduction of aqueous dispersions. Colloids Surf A Physicochem Eng Asp 502:121–129. https://doi.org/10.1016/j.colsurfa.2016.05.022

    Article  CAS  Google Scholar 

  2. Huang C, Wei J (2017) Experimental study on the collaborative drag reduction performance of a surfactant solution in grooved channels. Braz J Chem Eng 34(1):159–170. https://doi.org/10.1590/0104-6632.20170341s20150232

    Article  Google Scholar 

  3. Choi HJ, Jhon MS (1996) Polymer-induced turbulent drag reduction. Ind Eng Chem Res 35(9):2993–2998. https://doi.org/10.1021/ie9507484

    Article  CAS  Google Scholar 

  4. Sohn JI, Kim CA, Choi HJ, Jhon MS (2001) Drag-reduction effectiveness of xanthan gum in a rotating disk apparatus. Carbohydr Polym 45(1):61–68. https://doi.org/10.1016/S0144-8617(00)00232-0

    Article  CAS  Google Scholar 

  5. Kim CA, Jo DS, Choi HJ, Kim CB, Jhon MS (2000) A high-precision rotating disk apparatus for drag reduction characterization. Polym Test 20(1):43–48. https://doi.org/10.1016/S0142-9418(99)00077-X

    Article  Google Scholar 

  6. Zakin JL, Hunston DL (1978) Effects of solvent nature on the mechanical degradation of high polymer solutions. J Appl Polym Sci 22(6):1763–1766. https://doi.org/10.1002/app.1978.070220624

    Article  CAS  Google Scholar 

  7. Choi HJ, Lim ST, Lai PY, Chan CK (2002) Turbulent drag reduction and degradation of DNA. Phys Rev Lett 89(8):088302. https://doi.org/10.1103/PhysRevLett.89.088302

    Article  CAS  Google Scholar 

  8. Lim ST, Choi HJ, Lee SY, So JS, Chan CK (2003) λ-DNA induced turbulent drag reduction and its characteristics. Macromolecules 36(14):5348–5354. https://doi.org/10.1021/ma025964k

    Article  CAS  Google Scholar 

  9. Lim ST, Park SJ, Chan CK, Choi HJ (2005) Turbulent drag reduction characteristics induced by calf-thymus DNA. Physica A 350(1):84–88. https://doi.org/10.1016/j.physa.2004.11.034

    Article  CAS  Google Scholar 

  10. Hong CH, Zhang K, Choi HJ, Yoon SM (2010) Mechanical degradation of polysaccharide guar gum under turbulent flow. J Ind Eng Chem 16(2):178–180. https://doi.org/10.1016/j.jiec.2009.09.073

    Article  CAS  Google Scholar 

  11. Choi HJ, Kim CA, Sohn JI, Jhon MS (2000) An exponential decay function for polymer degradation in turbulent drag reduction. Polym Degrad Stab 69(3):341–346. https://doi.org/10.1016/S0141-3910(00)00080-X

    Article  CAS  Google Scholar 

  12. Sung JH, Kim CA, Choi HJ, Hur BK, Kim JG, Jhon MS (2004) Turbulent drag reduction efficiency and mechanical degradation of poly (acrylamide). J Polym Sci Part B Polym Phys 43(2):507–518. https://doi.org/10.1081/MB-120029784

    Google Scholar 

  13. Zhang K, Lim GH, Choi HJ (2016) Mechanical degradation of water-soluble acrylamide copolymer under a turbulent flow: effect of molecular weight and temperature. J Ind Eng Chem 33:156–161. https://doi.org/10.1016/j.jiec.2015.09.031

    Article  CAS  Google Scholar 

  14. Brostow W (1983) Drag reduction and mechanical degradation in polymer solutions in flow. Polymer 24(5):631–638. https://doi.org/10.1016/0032-3861(83)90119-2

    Article  CAS  Google Scholar 

  15. Brostow W, Ertepinar H, Singh RP (1990) Flow of dilute polymer solutions: chain conformations and degradation of drag reducers. Macromolecules 23(24):5109–5118. https://doi.org/10.1021/ma00226a013

    Article  CAS  Google Scholar 

  16. Kim CA, Kim JT, Lee K, Choi HJ, Jhon MS (2000) Mechanical degradation of dilute polymer solutions under turbulent flow. Polymer 41(21):7611–7615. https://doi.org/10.1016/S0032-3861(00)00135-X

    Article  CAS  Google Scholar 

  17. Lee KH, Zhang K, Choi HJ (2010) Time dependence of turbulent drag reduction efficiency of polyisobutylene in kerosene. J Ind Eng Chem 16(4):499–502. https://doi.org/10.1016/j.jiec.2010.03.027

    Article  CAS  Google Scholar 

  18. Kim JT, Kim CA, Zhang K, Jang CH, Choi HJ (2011) Effect of polymer–surfactant interaction on its turbulent drag reduction. Colloids Surf A Physicochem Eng Asp 391(1):125–129. https://doi.org/10.1016/j.colsurfa.2011.04.018

    Article  CAS  Google Scholar 

  19. Hong CH, Choi HJ, Zhang K, Renou F, Grisel M (2015) Effect of salt on turbulent drag reduction of xanthan gum. Carbohydr Polym 121:342–347. https://doi.org/10.1016/j.carbpol.2014.12.015

    Article  CAS  Google Scholar 

  20. Andrade RM, Pereira AS, Soares EJ (2016) Drag reduction in synthetic seawater by flexible and rigid polymer addition into a rotating cylindrical double gap device. J Fluids Eng 138(2):021101. https://doi.org/10.1115/1.4031229

    Article  Google Scholar 

  21. Pereira AS, Andrade RM, Soares EJ (2013) Drag reduction induced by flexible and rigid molecules in a turbulent flow into a rotating cylindrical double gap device: comparison between poly (ethylene oxide), polyacrylamide, and xanthan gum. J Nonnewton Fluid Mech 202:72–87. https://doi.org/10.1016/j.jnnfm.2013.09.008

    Article  CAS  Google Scholar 

  22. Kline S, Mcclintock F (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  23. Bizotto VC, Sabadini E (2008) Poly (ethylene oxide) × polyacrylamide. Which one is more efficient to promote drag reduction in aqueous solution and less degradable? J Appl Polym Sci 110(3):1844–1850. https://doi.org/10.1002/app.28803

    Article  CAS  Google Scholar 

  24. Madras G, Chattopadhyay S (2001) Effect of solvent on the ultrasonic degradation of poly (vinyl acetate). Polym Degrad Stab 71(2):273–278. https://doi.org/10.1016/S0141-3910(00)00174-9

    Article  CAS  Google Scholar 

  25. Sung HJ, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26):5735–5742. https://doi.org/10.1016/j.biomaterials.2004.01.066

    Article  CAS  Google Scholar 

  26. Andrade RM, Pereira AS, Soares EJ (2014) Drag increase at the very start of drag reducing flows in a rotating cylindrical double gap device. J Nonnewton Fluid Mech 212:73–79. https://doi.org/10.1016/j.jnnfm.2014.08.010

    Article  CAS  Google Scholar 

  27. Deshmukh SR, Sudhakar K, Singh RP (1991) Drag-reduction efficiency, shear stability, and biodegradation resistance of carboxymethyl cellulose-based and starch-based graft copolymers. J Appl Polym Sci 43(6):1091–1101. https://doi.org/10.1002/app.1991.070430609

    Article  CAS  Google Scholar 

  28. Lim ST, Choi HJ, Chan CK (2005) Effect of turbulent flow on coil-globule transition of λ-DNA. Macromol Rapid Commun 26(15):1237–1240. https://doi.org/10.1002/marc.200500232

    Article  CAS  Google Scholar 

  29. Lim ST, Hong CH, Choi HJ, Lai PY, Chan CK (2007) Polymer turbulent drag reduction near the theta point. Europhys Lett 80(5):58003. https://doi.org/10.1209/0295-5075/80/58003

    Article  Google Scholar 

  30. Zhang K, Choi HJ, Jang CH (2011) Turbulent drag reduction characteristics of poly (acrylamide-co-acrylic acid) in a rotating disk apparatus. Colloid Polym Sci 289(17–18):1821–1827. https://doi.org/10.1007/s00396-011-2502-0

    Article  CAS  Google Scholar 

  31. Pereira AS, Soares EJ (2012) Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device. J Nonnewton Fluid Mech 179-180:9–22. https://doi.org/10.1016/j.jnnfm.2012.05.001

    Article  CAS  Google Scholar 

  32. Kalashnikov VN (2002) Degradation accompanying turbulent drag reduction by polymer additives. J Nonnewton Fluid Mech 103(2–3):105–121. https://doi.org/10.1016/S0377-0257(01)00156-2

    Article  CAS  Google Scholar 

  33. Ng JCY, Cheung WH, McKay G (2002) Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J Colloid Interface Sci 255(1):64–74. https://doi.org/10.1006/jcis.2002.8664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also thank Dr. Anand Yethiraj and Mr. Swomitra Palit from the Department of Physics and Physical Oceanography: Dr. Anand Yethiraj for the use of the MCR 301 rheometer, and Mr. Swomitra Palit for his training and help in the experiments.

Funding

Financial support from Memorial University and NL Innovation Council (grant # 5404-1891-101) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xili Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Duan, X. & Muzychka, Y. New mechanism and correlation for degradation of drag-reducing agents in turbulent flow with measured data from a double-gap rheometer. Colloid Polym Sci 296, 829–834 (2018). https://doi.org/10.1007/s00396-018-4300-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4300-4

Keywords

Navigation