Skip to main content
Log in

Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel (poly(NIPA-co-HEMA-co-NVP-co-SPO)) was prepared by radical polymerization. The structure of this hydrogel was characterized by FTIR, 13C NMR spectra, and SEM. Equilibrium swelling measurement and UV-vis spectra were applied into evaluating thermo-responsive, pH-responsive and light-responsive properties. These results exhibited poly(NIPA-co-HEMA-co-NVP-co-SPO) hydrogel with excellent stimuli-responsive characteristics including thermal, pH, and light stimulation. Meanwhile, the obvious change for internal microstructure of hydrogel was observed by SEM after UV irradiation and in acidic condition. In addition, the poly(NIPA-co-HEMA-co-NVP-co-SPO) hydrogel with good mechanical property can be utilized in erasable and rewritable photoimaging based on the photochromic effect, which makes it a potential application in rewritable optical memory media or imaging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  2. Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891

    Article  CAS  Google Scholar 

  3. Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB, Pal S (2015) Stimulus-responsive, biodegradable, biocompatible, covalently cross-linked hydrogel based on dextrin and poly(N-isopropylacrylamide) for in vitro/in vivo controlled drug release ACS. Appl Mater Interfaces 7:14338–14351

    Article  CAS  Google Scholar 

  4. Garcia A, Marquez M, Cai T, Rosario R, Gust Z, Hayes M, Vail SA, Park CD (2007) Photo-, thermally, and pH-responsive microgels. Langmuir 23:224–229

    Article  CAS  Google Scholar 

  5. Rutkevičius M, Mehla 1 G H, Paunov VN, Qin Q, Rubini PA, Stoyanov SD, Petkov J (2013) Sound absorption properties of porous composites fabricated by a hydrogel templating technique. J Mater Res 28:2409–2414

  6. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  7. Eeckman F, Moes AJ, Amighi K (2004) Synthesis and characterization of thermosensitive copolymers for oral controlled drug delivery. Eur Polym J 40:873–881

    Article  CAS  Google Scholar 

  8. Bassik N, Abebe BT, Laflin KE, Gracias DH (2010) Photolithographically patterned smart hydrogel based bilayer actuators. Polymer 51:6093–6098

    Article  CAS  Google Scholar 

  9. Mueller M, Tebbe M, Andreeva DV, Karg M, Puebla RAA, Pazos-Perez N, Fery A (2012) Large-area organization of pNIPA-coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase. Langmuir 28:9168–9173

    Article  CAS  Google Scholar 

  10. Richter A, Paschew G, Klatt S (2008) Jens Lienig Karl-Friedrich Arndt and Hans-Jürgen P. Adler, review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581

    Article  CAS  Google Scholar 

  11. Schroeder V, Korten T, Linke H, Diez S, Maximov I (2013) Dynamic guiding of motor-driven microtubules on electrically heated smart polymer tracks. Nano Lett 13:3434–3438

    Article  CAS  Google Scholar 

  12. Chatterjee P, Pan Y, Stevens EC, Ma T, Jiang H, Dai LL (2013) Controlled morphology of thin film silicon integrated with environmentally responsive hydrogels. Langmuir 29:6495–6501

    Article  CAS  Google Scholar 

  13. Lee EM, Gwon SY, Ji BC, Wang S, Kim SH (2012) Multiple switching behaviors of poly(N-isopropylacrylamide) hydroel with spironaphthoxazine and D-π-a type dye. J Lumin 132:665–670

    Article  CAS  Google Scholar 

  14. Feng Q, Li F, Yan QZ, Zhu YC, Ge CC (2010) Frontal polymerization synthesis and drug delivery behavior of thermo-responsive poly(N-isopropylacrylamide) hydrogel. Colloid Polym Sci 288:915–921

    Article  CAS  Google Scholar 

  15. Dutta S, Dhara D (2015) Improved swelling–deswelling behavior of poly(N-isopropyl acrylamide) gels with poly(N,N′-dimethyl aminoethyl methacrylate) grafts. J Appl Polym Sci 132:42749–42758

    Article  Google Scholar 

  16. Banerjee R, Dhara D (2014) Functional group-dependent self-assembled nanostructures from thermo-responsive triblock copolymers. Langmuir 30:4137–4146

    Article  CAS  Google Scholar 

  17. Šťastná J, Hanyková L, Sedláková Z, Valentová H, Spěváček J (2013) Temperature-induced phase transition in hydrogel of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide). Colloid Polym Sci 291:2409–2417

    Article  Google Scholar 

  18. Petriashvili G, Santo MPD, Devadze L, Zurabishvili T, Sepashvili 1 N, Gary R, Barberi R (2016) Rewritable optical storage with a spiropyran doped liquid crystal polymer film. Macromol Rapid Commun 37:500–505

  19. Yuan W, Sun L, Tang H, Wen Y, Jiang G, Huang W, Jiang L, Song Y, Tian H, Zhu D (2005) A novel thermally stable spironaphthoxazine and its application in rewritable high density optical data storage. Adv Mater 17:156–160

    Article  CAS  Google Scholar 

  20. Shiraishi Y, Tanaka K, Hirai T (2013) Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism. ACS Appl Mater Interfaces 5:3456–3463

    Article  CAS  Google Scholar 

  21. Watkins DL, Fujiwara T (2012) Synthesis characterization, and solvent-independent photochromism of spironaphthooxazine dimers. J Photoch Photobio A 228:51–59

    Article  CAS  Google Scholar 

  22. Feczkó T, Varga O, Kovács M, Vidóczy T, Voncina B (2011) Preparation and characterization of photochromic poly(methyl methacrylate) and ethyl cellulose nanocapsules containing a spirooxazine dye. J Photoch Photobio A 222:293–298

    Article  Google Scholar 

  23. Wang S, Choi MS, Kim SH (2008) Bistable photoswitching in poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel for optical data storage. J Photochem Photobiol A 198:150–155

    Article  CAS  Google Scholar 

  24. Wang S, Choi MS, Kim SH (2008) Multiple switching photochromic poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel. Dyes Pigments 78:8–14

    Article  CAS  Google Scholar 

  25. Kulardana E, Mudiyanselage TK, Neckers DC (2009) Dual responsive poly(N-isopropylacrylamide) hydrogels having spironaphthoxazines as pendant groups. J Polym Sci A Polym Chem 47:3318–3325

    Article  Google Scholar 

  26. Zırıh T, Orakdogen N (2016) Evaluation of pH/temperature double responsivity of copolymerized methacrylate-based networks: solvent diffusion analysis with adjustable swelling kinetics. Eur Polym J 75:75371–75387

    Google Scholar 

  27. Brahim S, Narinesingh D, Elie AG (2003) Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules 4:497–503

    Article  CAS  Google Scholar 

  28. Orakdogen N, Celik T (2016) Ion-stimuli responsive dimethylaminoethyl methacrylate/hydroxyethyl methacrylate copolymeric hydrogels: mutual influence of reaction parameters on the swelling and mechanical strength. J Polym Res 23:1–17

    Article  CAS  Google Scholar 

  29. Fares MM, Assaf SM, Jaber AA (2011) Biodegradable amphiphiles of grafted poly(lactide) onto 2-hydroxyethyl methacrylate-co-N-vinylpyrrolidone copolymers as drug carriers. J Appl Polym Sci 122:840–848

    Article  CAS  Google Scholar 

  30. Telford AM, James M, Meagher L (2010) Thermally cross-linked PNVP films as antifouling coatings for biomedical applications. ACS Appl Mater Interfaces 2:2399–2408

    Article  CAS  Google Scholar 

  31. Yang XL, Yang BJ, Liu YY, Zhu HJ (2012) Microwave-assisted synthesis of novel spirooxazines and their photochromic behaviors in polymer matrices optoelectronics. Adv Mater 6:1146–1152

    CAS  Google Scholar 

  32. Yang J, Webb AR, Ameer GA (2004) Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 16:511–516

    Article  CAS  Google Scholar 

  33. Kumar V, Chaudhari CV, Bhardwaj YK, Goel NK, Sabharwal S (2006) Radiation induced synthesis and swelling characterization of thermo-responsive N-isopropylacrylamide-co-ionic hydrogels. Eur Polym J 42:235–246

    Article  CAS  Google Scholar 

  34. Al-Jallo HN, Jalhxoom MG (1975) Spectral correlations for α,β-unsaturated acid halides. Spectrochim Acta A 31:265–271

    Article  Google Scholar 

  35. Horak D, Krystufek M, Spevacek J (2000) Effect of reaction parameters on the dispersion polymerization of 1-vinyl-2-pyrrolidone. J Polym Sci A Polym Chem 38:653–663

    Article  CAS  Google Scholar 

  36. Toman L, Janata M, Spěváček J, Dvořánková B, Látalová P, Vlček P, Sikora A, Michálek J, Pekárek M (2006) One-pot synthesis of isocyanate and methacrylate multifunctionalized polyisobutylene and polyisobutylene-based amphiphilic networks. J Polym Sci A Polym Chem 44:2891–2900

    Article  CAS  Google Scholar 

  37. Toman L, Janata M, Spěváček J, Brus J, Sikora A, Látalová P, Holler P, Vlček P, Dvořánková B (2006) Amphiphilic conetworks. II. Novel two-step synthesis of poly[2-(dimethylamino)ethyl methacrylate]–polyisobutylene, poly(N-isopropylacrylamide)-polyisobutylene, and poly(N,N-dimethylacrylamide)-polyisobutylene hydrogels. J Polym Sci A Polym Chem 44:6378–6384

    Article  CAS  Google Scholar 

  38. Zhuang YF, Yang H, Wang GW, Zhu ZQ, Song WQ, Zhao HD (2003) Radiation polymerization and controlled drug release of polymer hydrogels with NIPA and NVP. J Appl Polym Sci 88:724–729

    Article  CAS  Google Scholar 

  39. Ricka J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17:2916–2921

    Article  CAS  Google Scholar 

  40. Zhang XM, ZB H, Li Y (1997) The phase transition and modulus of ionic N-isopropylacrylamide gels in concentrated salt solutions. J Appl Polym Sci 63:1851–1856

    Article  CAS  Google Scholar 

  41. Liu YY, Fan XD (2003) Preparation and characterization of a novel responsive hydrogel with a β-cyclodextrin-based macromonomer. J Appl Polym Sci 89:361–367

    Article  CAS  Google Scholar 

  42. Doron A, Katz E, Tao G, Willner I (1997) Photochemically-, chemically-, and pH-controlled electrochemistry at functionalized spiropyran monolayer electrodes. Langmuir 13:1783–1790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund for the Doctoral Program of Jinling Institute of Technology (jit-2012-27), the Natural Science Foundation of China (grant numbers 51103071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhou, L., Lv, L. et al. Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. Colloid Polym Sci 294, 1623–1632 (2016). https://doi.org/10.1007/s00396-016-3915-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3915-6

Keywords

Navigation