Skip to main content
Log in

Drying structures of marine clay in the deionized aqueous suspension

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Drying dissipative patterns during drying of marine colloidal (MC) clays were observed in the deionized aqueous suspension on a cover glass, a watch glass, and a Petri glass dish. Two kinds of broad rings (BR), i.e., BR of small particles at the outside edge and BR of large particles at the inner area from the edge, were observed. The size of the outside BR was the same as that of the initial suspension irrespective of colloidal concentration, whereas the size of the inner BR increased as colloidal concentration increased. Highly distorted multi-rings, i.e., branch-like or net-like patterns, appeared. Furthermore, no spoke lines formed except the areas at the outside edge of the dried film. These observations support the circular stacking of the anisotropic-shaped MC particles during the convectional flow process. The B type of solutes was deduced for MC from the drying patterns, where strong solute-substrate affinity especially for the small particles and weak inter-solute affinity coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring strains from dried liquid drops. Nature 389:827–829

    Article  CAS  Google Scholar 

  2. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765

    Article  CAS  Google Scholar 

  3. Kralchevsky PA, Nagayama K (2000) Capillary interactions between particles bound to interfaces, liquid films and membranes. Adv Colloid Interf Sci 85:145–192

    Article  CAS  Google Scholar 

  4. Okubo T (2015) Colloidal organization. Elsevier, Amsterdam

    Google Scholar 

  5. Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61:475–485

    Article  CAS  Google Scholar 

  6. Cachile M, Benichou O, Cazabat AM (2002) Evaporating droplets of completely wetting liquid. Langmuir 18:7985–7990

    Article  CAS  Google Scholar 

  7. Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessil droplet. Langmuir 21:3963–3971

    Article  CAS  PubMed  Google Scholar 

  8. Bonn SN, Rafai S, Azouni A, Bonn D (2006) Evaporating droplets. J Fluid Mech 549:307–313

    Article  Google Scholar 

  9. Gribbin G (1999) Almost everyone’s guide to science. The universe, life and everything. Yale University Press, New Haven

    Google Scholar 

  10. Ball P (1999) The self-made tapestry. Pattern formation in nature,. Oxford Univ Press, Oxford

    Google Scholar 

  11. Terada T, Yamamoto R, Watanabe T (1934a) Experimental studies on colloid nature of Chinese black ink. Part. 1. Sci Paper Inst Phys Chem Res Jpn 23:173–184

    CAS  Google Scholar 

  12. Terada T, Yamamoto R, Watanabe T (1934b) Experimental studies on colloid nature of Chinese black ink. Part. 2. Sci Paper Inst Phys Chem Res Jpn 27:75–92

    Google Scholar 

  13. Nakaya U (1947) Memoirs of Torahiko Terada (Japanese). Kobunsya, Tokyo

    Google Scholar 

  14. Palmer HJ (1976) The thermodynamic stability of rapidly evaporating liquids at reduced pressure. J Fluid Mech 75:487–511

    Article  Google Scholar 

  15. Anderson DM, Davis SH (1995) The spreading of volatile liquid droplets on heated surfaces. Phys Fluids 7:248–265

    Article  CAS  Google Scholar 

  16. Routh AF, Russel WB (1998) Horizontal drying fronts during solvent evaporation from latex films. AIChEJ 44:2088–2098

    Article  CAS  Google Scholar 

  17. Burelbach JP, Bankoff SG (1998) Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech 195:463–494

    Article  Google Scholar 

  18. Fischer BJ (2002) Particle convection in an evaporating colloidal droplet. Langmuir 18:60–67

    Article  CAS  Google Scholar 

  19. Okubo T, Okamoto J, Tsuchida A (2009a) Convectional, sedimentation and drying dissipative structures of coffee in the presence of cream and in its absence. Colloid Polym Sci 287:351–365

    Article  CAS  Google Scholar 

  20. Okubo T (2009) Convectional, sedimentation and drying dissipative structures of black tea in the presence of cream and in its absence. Colloid Polym Sci 287:645–657

    Article  CAS  Google Scholar 

  21. Vanderhoff JW (1973) The transport of water through latex films. J Polym Sci Symp 41:155–174

    Article  Google Scholar 

  22. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  23. Ohara PC, Heath JR, Gelbart WM (1997) Bildung von submikronmeter-grossen partikel ringen beim verdunsten nanopartikel-hattiger losungen. Angew Chem 109:1120–1122

    Article  Google Scholar 

  24. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Growth of a semiconductor nanoparticle ring during the drying of a suspension droplet. Langmuir 15:957–965

    Article  CAS  Google Scholar 

  25. Nikoobakht B, Wang ZL, El-Sayed MA (2000) Self-assembly of gold nanorods. J Phys Chem 104:8635–8640

    Article  CAS  Google Scholar 

  26. Ung T, Litz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452

    Article  CAS  Google Scholar 

  27. Okubo T, Kokufuta E, Nakamuro M, Yoshinaga K, Mizutani M, Tsuchida A (2010) Drying dissipative structures of lycopodium spore particles in aqueous dispersion. Colloids Surf B Biointerf 80:193–199

    Article  CAS  Google Scholar 

  28. Jacobs MB, Ewing M (1965) Mineralogy of particulate matter suspended in sea water. Science 149:179–180

    Article  CAS  PubMed  Google Scholar 

  29. Russ JC (1971) Energy dispersion X-ray analysis on the scanning electron microscope. In: Energy Dispersion X-ray Analysis and Electron Probe Analysis. Am Soc Testing Mater Spec Pub 485:pp154–pp179

    Google Scholar 

  30. Bassin NJ (1975) Suspended marine clay mineral identification by scanning electron microscopy and energy-dispersive X-ray analysis. Limnology Oceanography 20:133–137

    Article  CAS  Google Scholar 

  31. Okubo T, Okamoto T, Okamoto J, Tsuchida A (2008a) Sedimentary and drying dissipative patterns of binary suspensions of colloidal silica spheres having different sizes. Colloid Polym Sci 286:385–394

    Article  CAS  Google Scholar 

  32. Okubo T, Okamoto J, Tsuchida A (2008b) Sedimentation and drying dissipative patterns of ternary mixtures of colloidal silica spheres having different sizes. Colloid Polym Sci 286:941–949

    Article  CAS  Google Scholar 

  33. Okubo T, Tsuchida A, Togawa H (2009b) Drying dissipative patterns of aqueous solutions of simple electrolytes and their binary mixtures on a cover glass. Colloid Polym Sci 287:443–454

    Article  CAS  Google Scholar 

  34. Okubo T (2011) Dissipative crystallization of aqueous mixtures of potassium salts of poly(riboadenylic acid) and poly(ribouridylic acid). Colloids Surf B Biointerf 87:11–17

    Article  CAS  Google Scholar 

  35. Okubo T (2013) Inclusional association as studied by the drying dissipative structure. Part 3. Drying patterns of aqueous mixtures of β-cyclodextrin and n-alkyltrimethylammonium bromide. Colloid Polym Sci 291:2599–2605

    Article  CAS  Google Scholar 

  36. Okubo T (2014) Dissipative crystallization of aqueous mixtures of potassium salts of poly(riboguanylic acid) and poly(ribocytidylic acid). Colloid Polym Sci 292:1419–1427

    Article  CAS  Google Scholar 

  37. Okubo T, Otake A, Tsuchida A (2009c) Drying dissipative structures of the aqueous suspensions of palygorskite and tungstic acid particles. Colloid Polym Sci 287:1435–1444

    Article  CAS  Google Scholar 

  38. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Drying dissipative structures of the aqueous suspensions of monodispersed bentonite particles. Colloid Polym Sci 283:1123–1130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okubo, T., Kitano, H., Murou, M. et al. Drying structures of marine clay in the deionized aqueous suspension. Colloid Polym Sci 293, 3393–3401 (2015). https://doi.org/10.1007/s00396-015-3740-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3740-3

Keywords

Navigation