Skip to main content
Log in

Enhanced permeability of Rhodamine B into bilayers comprised of amphiphilic random block copolymers by incorporation of ionic segments in the hydrophobic chains

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The permeability of Rhodamine B (Rh) into bilayers comprised of amphiphilic block copolymers was explored using ionic segments incorporated in the hydrophobic chains. The amphiphilic block copolymer consisting of a hydrophilic poly(methacrylic acid) block and a hydrophobic poly(methyl methacrylate-random-methacrylic acid) block containing 0.2 mol% units of the 3-sulfopropyl methacrylate potassium salt (SpMA) produced giant vesicles by photopolymerization-induced self-assembly in an aqueous methanol solution. The spherical vesicles were transformed into films as the SpMA ratio increased. The SpMA units incorporated in the hydrophobic chains enhanced the Rh permeability into the bilayer, whereas the vesicles without SpMA units captured no Rh molecules. However, the Rh was released from the hydrophobic phases in the isolation process of the bilayers by repeated sedimentation-redispersion. The permeability enhancement was attributed to the pore formation in the bilayers by the capture and release of the Rh by the SpMA units in the hydrophobic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Elston T, Wang H, Oster G (1998) Nature 391:510

    Article  CAS  Google Scholar 

  2. Nishi T, Forgac M (2002) Nat Rev Mol Cell Biol 3:94

    Article  CAS  Google Scholar 

  3. Gadsby DC, Vergani P, Csanady L (2006) Nature 440:477

    Article  CAS  Google Scholar 

  4. Gouaux E, MacKinnon R (2005) Science 310:1461

    Article  CAS  Google Scholar 

  5. Toyoshima C, Nomura H (2002) Nature 418:605

    Article  CAS  Google Scholar 

  6. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Nature 414:43

    Article  CAS  Google Scholar 

  7. Runas KA, Malmstadt N (2015) Soft Matter 11:499

    Article  CAS  Google Scholar 

  8. Strzelbicki J, Barrtsch RA (1982) J Membr Sci 10:35

    Article  CAS  Google Scholar 

  9. Hamilton RT, Kaker EW (1990) J Membr Sci 54:259

    Article  CAS  Google Scholar 

  10. Higaki K, Kato M, Hashida M, Sezaki H (1988) Pharm Res 5:309

    Article  CAS  Google Scholar 

  11. Kim K, Geng J, Tunuguntla R, Comolli LR, Grigoropoulos CP, Ajo-Franklin CM, Noy A (2014) Nano Lett 14:7051

    Article  CAS  Google Scholar 

  12. Randles EG, Bergethon PR (2013) Langmuir 29:1490

    Article  CAS  Google Scholar 

  13. Kandasamy YS, Cai J, Beler A, Sang MSJ, Andrews PD, Murphy RS (2015) Org Biomol Chem 13:2652

    Article  CAS  Google Scholar 

  14. Arteta MY, Ainalem ML, Porcar L, Martel A, Coker H, Lundberg D, Chang DP, Soltwedel O, Barker R, Nylander T (2014) J Phys Chem B 118:12892

    Article  Google Scholar 

  15. Tse ECM, Barile CJ, Gewargis JP, Li Y, Zimmerman SC, Gewirth AA (2015) Anal Chem 87:2403

    Article  CAS  Google Scholar 

  16. Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Biophys J 70:339

    Article  CAS  Google Scholar 

  17. Yoshida E (2013) Colloid Polym Sci 291:2733

    Article  CAS  Google Scholar 

  18. Yoshida E (2014) Colloid Polym Sci 292:763

    Article  CAS  Google Scholar 

  19. Yoshida E (2015) Supramol Chem 27:274

    Article  CAS  Google Scholar 

  20. Yoshida E (2015) Colloid Polym Sci 293:249

    Article  CAS  Google Scholar 

  21. Yoshida E (2015) Colloid Polym Sci 293:1275

    Article  CAS  Google Scholar 

  22. Yoshida E (2014) Colloid Polym Sci 292:2555

    Article  CAS  Google Scholar 

  23. Yoshida E (2014) Colloid Polym Sci 292:1463

    Article  CAS  Google Scholar 

  24. Yoshida E (2015) Colloid Polym Sci 293:649

    Article  CAS  Google Scholar 

  25. Yoshida E (2015) Colloid Polym Sci 293:1835

    Article  CAS  Google Scholar 

  26. Yoshida E (2015) Colloid Polym Sci 293:1841

    Article  CAS  Google Scholar 

  27. Steyern FV, Josefsson J-O, Tagerud S (1996) J Histochem Cytochem 44:267

    Article  Google Scholar 

  28. Yoshida E (2012) International Scholarly Research Network (ISRN) Polym Sci, Article 102186. doi:10.5402/2012/102186

  29. Kobayashi S, Uyama H, Yamamoto I, Matsumoto Y (1990) Polym J 22:759

    Article  CAS  Google Scholar 

  30. Yoshida E (2013) Open J Polym Chem 3:16

    Article  CAS  Google Scholar 

  31. Yoshida E (2009) Colloid Polym Sci 287:767

    Article  CAS  Google Scholar 

  32. Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans II 72:1525

    Article  Google Scholar 

  33. Hamilton RT, Kaler EW (1990) J Phys Chem 94:2560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful for a JSPS Grant-in-Aid for Scientific Research (Grant Number 25390003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Yoshida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, E. Enhanced permeability of Rhodamine B into bilayers comprised of amphiphilic random block copolymers by incorporation of ionic segments in the hydrophobic chains. Colloid Polym Sci 293, 2437–2443 (2015). https://doi.org/10.1007/s00396-015-3679-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3679-4

Keywords

Navigation