Skip to main content
Log in

Evaluation of amphiphilic PEG derivatives as surface modifiers for the production of stealth liposomes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Some amphiphilic conjugates of amino- or carboxy-mPEG2000 or mPEG5000 with a series of lipoamino acids as a lipid anchor (PEG-LAA), recently synthetized as novel surface modifiers for drug nanocarriers, were used to decorate the surface of multilamellar liposomes (MLV). For comparison, MLV were also prepared using commercial PEG lipid derivatives (DSPE-PEG and PEG 40 monostearate), commonly used to produce stealth nanocarriers. Two experimental models were used to check the ability of the PEG-LAA conjugates to organize themselves on the surface of liposomes: an in vitro uptake study, using murine macrophage cultures, that confirmed the ability of PEG-LAA conjugates to hinder or retard the cellular internalization of the vesicles. Second, the measurement of the zeta potential values of negatively charged MLV produced with the various PEG-LAAs, which confirmed their shielding effect on the MLV surface charge, linearly to their molar concentration and as a function of the structures of PEG and LAA used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Pignatello R, Musumeci T, Basile L, Carbone C, Puglisi G (2011) Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development. J Pharm Bioallied Sci 3:4–14

    Article  CAS  Google Scholar 

  2. Wiśniewska-Becker A, Gruszecki WI (2013) Biomembrane models. In: Pignatello R (ed) Drug-biomembrane interaction studies—the application of calorimetric techniques. Woodhead/Elsevier, Cambridge, pp 47–95

    Chapter  Google Scholar 

  3. Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4:297–305

    Article  CAS  Google Scholar 

  4. Schwendener RA (2007) Liposomes in biology and medicine. Adv Exp Med Biol 620:117–128

    Article  Google Scholar 

  5. Iwamoto T (2013) Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs. Biol Pharm Bull 36:715–718

    Article  CAS  Google Scholar 

  6. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  Google Scholar 

  7. Koshkaryev A, Sawant RR, Deshpande M, Torchilin V (2013) Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv Drug Deliv Rev 65:24–35

    Article  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  Google Scholar 

  9. Yan X, Scherphof GL, Kamps JA (2005) Liposome opsonization. J Lipos Res 15:109–139

    Article  CAS  Google Scholar 

  10. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed (Lond) 1:297–315

    Article  CAS  Google Scholar 

  11. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  CAS  Google Scholar 

  12. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 6:715–728

    Article  CAS  Google Scholar 

  13. Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13:105–119

    Article  CAS  Google Scholar 

  14. Domínguez A, Suárez-Merino B, Goñi-de-Cerio F (2014) Nanoparticles and blood–brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol 14:766–779

    Article  Google Scholar 

  15. Patel A, Cholkar K, Mitra AK (2014) Recent developments in protein and peptide parenteral delivery approaches. Ther Deliv 5:337–365

    Article  CAS  Google Scholar 

  16. Giddam AK, Zaman M, Skwarczynski M, Toth I (2012) Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (Lond) 7:1877–1893

    Article  CAS  Google Scholar 

  17. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36

    Article  CAS  Google Scholar 

  18. Li J, Kao WJ (2003) Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates. Biogeosciences 4:1055–1067

    CAS  Google Scholar 

  19. Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25:55–71

    Article  CAS  Google Scholar 

  20. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X (2008) Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Rel 130:238–245

    Article  CAS  Google Scholar 

  21. Pignatello R, Pantò V, Basile L, Cardile V, Craparo E, Impallomeni G, Puglisi G, Ballistreri A (2009) New amphiphilic derivatives of poly(ethylene glycol) as surface modifiers of colloidal drug carriers. Proc. 36th Annual Meeting and Exposition of the Controlled Release Society; Copenhagen, July 18–22; pp. 392–393

  22. Pignatello R, Pantò V, Basile L, Impallomeni G, Ballistreri A, Pistarà V, Craparo EF, Puglisi G (2010) New amphiphilic conjugates of mono- and bis(carboxy)-PEG2000 polymers with lipoamino acids as surface modifiers of colloidal drug carriers. Macromol Chem Phys 211:1148–1156

    Article  CAS  Google Scholar 

  23. Toth I (1994) A novel chemical approach to drug delivery: lipidic amino acid conjugates. J Drug Target 2:217–239

    Article  CAS  Google Scholar 

  24. Wong A, Toth I (2001) Lipid, sugar and liposaccharide based delivery systems. Curr Med Chem 8:1123–1136

    Article  CAS  Google Scholar 

  25. Pignatello R, Intravaia VD, Puglisi G (2006) A calorimetric evaluation of the interaction of amphiphilic prodrugs of idebenone with a biomembrane model. J Colloid Interface Sci 299:626–635

    Article  CAS  Google Scholar 

  26. Pignatello R, Noce C, Campisi A, Acquaviva R, Bucolo C, Puglisi G, Toth I (2007) Evaluation of cell tolerability of a series of lipoamino acids using biological membranes and a biomembrane model. Curr Drug Deliv 4:109–121

    Article  CAS  Google Scholar 

  27. Abdelrahim AS, Simerska P, Toth I (2012) Liposaccharide-based nanoparticulate drug delivery system. Tetrahedron 25:4967–4975

    Article  Google Scholar 

  28. Ziora ZM, Blaskovich MA, Toth I, Cooper MA (2012) Lipoamino acids as major components of absorption promoters in drug delivery. Curr Top Med Chem 12:1562–1580

    Article  CAS  Google Scholar 

  29. Pignatello R, Basile L, Musumeci T, Cardile V, Vicari L, Martinetti D, Gulisano M, Puglisi G (2010) In vitro assessment of the sterical stabilization of colloidal carriers decorated with novel amphiphilic PEG derivatives. Proc. 2nd Conference on Innovation in Drug Delivery. Aix-en-Provence (France), October 3–6

  30. Basile L, Passirani C, Huynh NT, Béjaud J, Benoit JP, Puglisi G, Pignatello R (2012) Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative. Int J Pharm 426:231–238

    Article  CAS  Google Scholar 

  31. Pignatello R, Leonardi A, Pellitteri R, Carbone C, Caggia S, Graziano ACE, Cardile V (2013) Evaluation of new amphiphilic PEG derivatives for preparing stealth lipid nanoparticles. Colloids Surf A Physicochem Eng Asp 44:136–144

    Article  Google Scholar 

  32. Pignatello R, Pantò V, Basile L, Leonardi A, Guarino C, La Rosa C (2013) Characterization of micellar systems produced by new amphiphilic conjugates of poly(ethylene glycol). Drug Dev Ind Pharm doi: 10.3109/03639045.2013.828226

  33. Pignatello R, Pantò V, Impallomeni G, Carnemolla GM, Carbone C, Puglisi G (2013) New amphiphilic conjugates of amino-poly(ethylene glycols) with lipoamino acids as surface modifiers of colloidal drug carriers. Macromol Chem Phys 214:46–55

    Article  CAS  Google Scholar 

  34. Pignatello R, Puleo A, Guccione S, Raciti G, Acquaviva R, Campisi A, Ventura CA, Puglisi G (2005) Enhancement of drug affinity for cell membranes by conjugation with lipoamino acids. I. Synthesis and biological evaluation of lipophilic conjugates of tranylcypromine. Eur J Med Chem 40:1074–1079

    Article  CAS  Google Scholar 

  35. Pignatello R, Sarpietro MG (2013) General experimental set-up of liposomal systems for DSC. In: Pignatello R (ed) Drug-biomembrane interaction studies. The application of calorimetric techniques. Woodhead Publ. Ltd. (Elsevier), Cambridge, pp 363–379

    Chapter  Google Scholar 

  36. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26:552–558

    Article  CAS  Google Scholar 

  37. Stolnik S, Illum I, Davis SS (1995) Long circulating microparticle drug carriers. Adv Drug Deliv Rev 16:195–214

    Article  CAS  Google Scholar 

  38. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    Article  CAS  Google Scholar 

  39. Georgiev GA, Sarker DK, Al-Hanbali O, Georgiev GD, Lalchev Z (2007) Effects of poly(ethylene glycol) chains conformational transition on the properties of mixed DMPC/DMPE-PEG thin liquid films and monolayers. Colloids Surf B Biointerf 59:184–193

    Article  CAS  Google Scholar 

  40. Bedu-Addo FK, Tang P, Xu Y, Huang L (1996) Effects of polyethylene glycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Pharm Res 13:710–717

    Article  CAS  Google Scholar 

  41. Peracchia MT (2003) Stealth nanoparticles for intravenous administration. STP Pharm Sci 13:155–161

    CAS  Google Scholar 

  42. Malvern Instruments (application note). The use of zeta-potential measurements to study sterically stabilized liposomes. Available at: http://www.azonano.com/details.asp?ArticleID=1214. Accessed September 2014

  43. López Cascales JJ, Berendsen HJC, García de la Torre J (1996) Molecular dynamics simulation of water between two charged layers of dipalmitoylphosphatidylserine. J Phys Chem 100:8621–8627

    Article  Google Scholar 

  44. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA, Trubetskoy VS, Herron JN, Gentry CA (1994) Polyethylene glycol on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1195:11–20

    Article  CAS  Google Scholar 

  45. Barros NB, Migliaccio V, Facundo VA, Ciancaglini P, Stábeli RG, Nicolete R, Silva-Jardim I (2013) Liposomal-lupane system as alternative chemotherapy against cutaneous leishmaniasis: macrophage as target cell. Exp Parasitol 135:337–343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was in part supported by the University of Catania (Ricerca di Ateneo) and by the Italian Minister of University (PRIN2010-11 Project no. 2010H834LS).

Conflict of interest

No conflict of interest must be declared by all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Pignatello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cupri, S., Musumeci, T., Graziano, A.C.E. et al. Evaluation of amphiphilic PEG derivatives as surface modifiers for the production of stealth liposomes. Colloid Polym Sci 293, 1083–1092 (2015). https://doi.org/10.1007/s00396-014-3465-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3465-8

Keywords

Navigation