Skip to main content
Log in

Highly hydrophobic films with high water adhesion by electrodeposition of poly(3,4-propylenedioxythiophene) containing two alkoxy groups

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Highly hydrophobic properties with water adhesion (parahydrophobic properties) are obtained by electrodeposition of poly(3,4-propylenedioxythiophene) containing two alkoxy groups of various length (three to six). The depositions are performed by cyclic voltammetry with different deposition scans to obtain highly adherent and homogeneous films. The capacity to obtain highly hydrophobic properties is the highest with the shortest alkyl chains even if the monomer is intrinsically hydrophilic. This is due to the growth of nanofibers forming a highly porous film, favoring the Cassie-Baxter state but with a high water penetration inside the surface roughness. These coatings could be used in anti-bioadhesion for which it is important to have surface structures of size lower than that of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darmanin T, Guittard F (2014) Recent advances in the potential applications of bioinspired superhydrophobic materials. J Mater Chem A 2:16319–16359

    Article  CAS  Google Scholar 

  2. Su C (2009) Highly hydrophobic and oleophilic foam for selective absorption. Appl Surf Sci 256:1413–1418

    Article  CAS  Google Scholar 

  3. Chen M, Jiang W, Wang F, Shen P, Ma P, Gu J, Mao J, Li F (2013) Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface. Appl Surf Sci 286:249–256

    Article  CAS  Google Scholar 

  4. Novio F, Ruiz-Molin D (2014) Hydrophobic coordination polymer nanoparticles and application for oil–water separation. RSC Adv 4:15293–15296

    Article  CAS  Google Scholar 

  5. Peng M, Li H, Wu L, Zheng Q, Chen Y, Gu W (2005) Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. J Appl Polym Sci 1358–1363

  6. Padial NM, Quartapelle Procopio E, Montoro C, López E, Oltra JE, Colombo V, Maspero A, Masciocchi N, Galli S, Senkovska I, Kaskel S, Barea E, Navarro JAR (2013) Highly hydrophobic isoreticular porous metal–organic frameworks for the capture of harmful volatile organic compounds. Angew Chem Int Ed 52:8290–8294

    Article  CAS  Google Scholar 

  7. Lassen B, Holmberg K, Brink C, Carlén A, Olsson J (1994) Binding of salivary proteins and oral bacteria to hydrophobic and hydrophilic surfaces in vivo and in vitro. Colloid Polym J 272:1143–1150

    Article  CAS  Google Scholar 

  8. Laga R, Koňák C, Šubr V, Ulbrich K (2007) Coating of nanoparticles bearing amino groups on the surface with hydrophilic HPMA-based polymers. Colloid Polym J 285:1509–1514

    Article  CAS  Google Scholar 

  9. Bhatt S, Pulpytel J, Ceccone G, Lisboa P, Rossi F, Kumar V, Arefi-Khonsari F (2011) Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by inductively excited low pressure plasma. Langmuir 27:14570–14580

    Article  CAS  Google Scholar 

  10. Pérez-Roldan MJ, Parracino A, Ceccone G, Colpo P, Rossi F (2014) Interactions of serum derived proteins with sub-micrometer structured surfaces. Plasma Process Polym 11:577–587

    Article  Google Scholar 

  11. Bellanger H, Darmanin T, Taffin de Givenchy E, Guittard F (2014) Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem Rev 114:2694–2716

    Article  CAS  Google Scholar 

  12. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  13. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  14. Darmanin T, Guittard F (2014) Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog Polym Sci 39:656–682

    Article  CAS  Google Scholar 

  15. Long Y-Z, Li M-M, Gu C, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442

    Article  CAS  Google Scholar 

  16. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Article  CAS  Google Scholar 

  17. Lin P, Yan F, Helen HLW (2009) Improvement of the tunable wettability property of poly(3-alkylthiophene) films. Langmuir 25:7465–7470

    Article  CAS  Google Scholar 

  18. Doebbelin M, Tena-Zaera R, Marcilla R, Iturri J, Moya S, Pomposo JA, Mecerreyes D (2009) Multiresponsive PEDOT–ionic liquid materials for the design of surfaces with switchable wettability. Adv Funct Mater 19:3326–3333

    Article  CAS  Google Scholar 

  19. Khedkar SP, Radhakrishnan S (1997) Application of dip-coating process for depositing conducting polypyrrole films. Thin Solid Films 303:167–172

    Article  CAS  Google Scholar 

  20. Dong Q, Zhou Y, Pei J, Liu Z, Li Y, Yao S, Zhang J, Tian W (2010) All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer. Org Electron 11:1327–1331

    Article  CAS  Google Scholar 

  21. McCarthy JE, Hanley CA, Brennan LJ, Lambertini VG, Gun’ko YK (2014) Fabrication of highly transparent and conducting PEDOT:PSS films using a formic acid treatment. J Mater Chem C 2:764–770

    Article  CAS  Google Scholar 

  22. Zhang Z, Liang Y, Liang P, Li C, Fang S (2011) Protein adsorption materials based on conducting polymers: polypyrrole modified with ω‐(N‐pyrrolyl)‐octylthiol. Polym Int 60:703–710

    Article  CAS  Google Scholar 

  23. Gabriel S, Cécius M, Fleury-Frenette K, Cossement D, Hecq M, Ruth N, Jérôme R, Jérôme C (2007) Synthesis of adherent hydrophilic polypyrrole coatings onto (semi)conducting surfaces. Chem Mater 19:2364–2371

    Article  CAS  Google Scholar 

  24. Im SG, Kusters D, Choi W, Baxamusa SH, van de Sanden MCM, Gleason KK (2008) Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition. ACS Nano 2:1959–1967

    Article  CAS  Google Scholar 

  25. Taleb S, Darmanin T, Guittard F (2014) Elaboration of voltage and ion exchange stimuli-responsive conducting polymers with selective switchable liquid-repellency. ACS Appl Mater Interfaces 6:7953–7960

    Article  CAS  Google Scholar 

  26. Yan H, Kurogi K, Mayama H, Tsujii K (2005) Environmentally stable super water-repellent poly(alkylpyrrole) films. Angew Chem Int Ed 44:3453–3456

    Article  CAS  Google Scholar 

  27. Darmanin T, Guittard F (2014) Wettability of poly(3-alkyl-3,4-propylenedioxythiophene) fibrous structures forming nanoporous, microporous or micro/nanostructured networks. Mater Chem Phys 146:6–11

    Article  CAS  Google Scholar 

  28. Luo S-C, Sekine J, Zhu B, Zhao H, Nakao A, H-h Y (2012) Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: the effect of functional groups and temperature in template-free electropolymerization. ACS Nano 6:3018–3026

    Article  CAS  Google Scholar 

  29. El-Maiss J, Darmanin T, Taffin de Givenchy E, Amigoni S, Eastoe J, Sagisaka M, Guittard F (2014) Superhydrophobic surfaces with low and high adhesion made from mixed (hydrocarbon and fluorocarbon) 3,4-propylenedioxythiophene monomers. J Polym Sci Part B Polym Phys 52:782–788

    Article  CAS  Google Scholar 

  30. Mortier C, Darmanin T, Guittard F (2014) The major influences of substituent size and position of 3,4-propylenedioxythiophene on the formation of highly hydrophobic nanofibers. ChemPlusChem 79:1434–1439. doi:10.1002/cplu.201402187R1

  31. Darmanin T, Mortier C, Guittard F (2014) One-pot process to control the elaboration of non-wetting nanofibers. Adv Mater Interfaces 1:1300094/1–1300094/6

    Article  CAS  Google Scholar 

  32. Poverenov E, Li M, Bitler A, Bendikov M (2010) Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem Mater 22:4019–4025

    Article  CAS  Google Scholar 

  33. Reeves BD, Grenier CRG, Argun AA, Cirpan A, McCarley TD, Reynolds JR (2004) Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules 37:7559–7569

    Article  CAS  Google Scholar 

  34. Galand EM, Kim Y-G, Mwaura JK, Jones AG, McCarley TD, Shrotriya V, Yang Y, Reynolds JR (2006) Optimization of narrow band-gap propylenedioxythiophene: cyanovinylene copolymers for optoelectronic applications. Macromolecules 39:9132–9142

    Article  CAS  Google Scholar 

  35. Reeves BD, Unur E, Ananthakrishnan N, Reynolds JR (2007) Defunctionalization of ester-substituted electrochromic dioxythiophene polymers. Macromolecules 40:5344–5352

    Article  CAS  Google Scholar 

  36. Zhao H, Liu C-Y, Luo S-C, Zhu B, Wang T-H, Hsu H-F, H-h Y (2012) Facile syntheses of dioxythiophene-based conjugated polymers by direct C−H arylation. Macromolecules 45:7783–7790

    Article  CAS  Google Scholar 

  37. Park H-S, Ko S-J, Park J-S, Kim JY, Song H-K (2013) Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window. Sci Rep 3:2454

    Google Scholar 

  38. Diaz AF, Crowley J, Bargon J, Gardini GP, Torrance JB (1981) Electrooxidation of aromatic oligomers and conducting polymers. J Electroanal Chem 121:355–361

    Article  CAS  Google Scholar 

  39. Li M, Sheynin Y, Patra A, Bendikov M (2009) Tuning the electrochromic properties of poly(alkyl-3,4-ethylenedioxyselenophenes) having high contrast ratio and coloration efficiency. Chem Mater 21:2482–2488

    Article  CAS  Google Scholar 

  40. Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320

    Article  CAS  Google Scholar 

  41. Patra A, Bendikov M, Chand S (2014) Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. Acc Chem Res 47:1465–1474

    Article  CAS  Google Scholar 

  42. Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc London 95:65–87

    Article  Google Scholar 

  43. Marmur A (2013) Superhydrophobic and superhygrophobic surfaces: from understanding non-wettability to design considerations. Soft Matter 9:7900–7904

    Article  CAS  Google Scholar 

  44. Marmur A (2008) From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 24:7573–7579

    Article  CAS  Google Scholar 

  45. Marmur A (2012) Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 8:6867–6870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The group thanks Jean-Pierre Laugier (CCMA, Université Nice Sophia Antipolis) for the SEM analyses. This project was supported by JSPS [KAKENHI, Grant-in-Aid for Young Scientists (A), No. 23685034], RCUK [through EPSRC EP/K020676/1], and ANR-13-G8ME-0003 under the G8 Research Councils Initiative on Multilateral Research Funding—G8-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Guittard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamy, M., Darmanin, T. & Guittard, F. Highly hydrophobic films with high water adhesion by electrodeposition of poly(3,4-propylenedioxythiophene) containing two alkoxy groups. Colloid Polym Sci 293, 933–940 (2015). https://doi.org/10.1007/s00396-014-3451-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3451-1

Keywords

Navigation