Skip to main content
Log in

Preparation of thermo- and pH-responsive star copolymers via ATRP and its use in drug release application

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A star-shaped copolymer, poly(N-isopropylacrylamide-co-itaconamic acid (poly(NIPAAm-co-IAM)), being pH- and thermo-dual-responsive, was synthesized by atomic transfer radical polymerization (ATRP) and characterized in this work. The lower critical solution temperature (LCST) of the star copolymer increases with the molar fraction of IAM. The particle size decreases as the temperature increases but increases as the pH value increases. Transmission electron microscopy (TEM) reveals that the star-shaped copolymer has a near-spherical core-shell structure that favors drug delivery. The star copolymer can be used in drug encapsulation as well as drug release. The star copolymer has different drug release rates in environments of different pH, and thus it can carry drugs in an acidic (gastric) environment and release the drugs in a neutral or less acidic (intestinal) environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aloorkar NH, Kulkarmi AS, Patil RA, Ingale DJ (2012) Star polymers: an overview. Int J Pharm Sci Nanotech 5:1675–1684

    Google Scholar 

  2. Bai Y, Wei J, Yang L, He C, Lu X (2012) Temperature and pH dual-responsive behavior of polyhedral oligomeric silsesquioxane-based star-block copolymer with poly(acrylic acid-block-N-isopropylacrylamide) as arms. Colloid Polym Sci 290(6):507–515

    Article  CAS  Google Scholar 

  3. Cai J, Guo J, Ji M, Yang W, Wang C, Fu S (2007) Preparation and characterization of multiresponsive polymer composite microspheres with core–shell structure. Colloid Polym Sci 285(14):1607–1615

    Article  CAS  Google Scholar 

  4. Carreira A, Gonçalves F, Mendonça P, Gil M, Coelho J (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydr Polym 80(3):618–630

    Article  CAS  Google Scholar 

  5. Cirillo G, Iemma F, Spizzirri U, Puoci F, Curcio M, Parisi O, Picci N (2011) Synthesis of stimuli-responsive microgels for in vitro release of diclofenac diethyl ammonium. J Biomater Sci 22(4–6):823–844

    Article  CAS  Google Scholar 

  6. Fang S, Kawaguchi H (2002) A thermosensitive amphoteric microsphere and its potential application as a biological carrier. Colloid Polym Sci 280(11):984–989

    Article  CAS  Google Scholar 

  7. Fundueanu G, Constantin M, Stanciu C, Theodoridis G, Ascenzi P (2009) pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release. J Mater Sci Mater Med 20(12):2465–2475

    Article  CAS  Google Scholar 

  8. Gupta B, Kumari M, Ikram S (2013) Drug release studies of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric. J Polym Res 20(3):95

    Article  Google Scholar 

  9. Hadjichristidis N, Pitsikalis M, Iatrou H, Driva P, Sakellariou G, Chatzichristidi M (2012) 6.03—polymers with star-related structures: synthesis, properties, and applications. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 29–111. doi:10.1016/B978-0-444-53349-4.00161-8

    Chapter  Google Scholar 

  10. Ho KM, Li WY, Wong CH, Li P (2010) Amphiphilic polymeric particles with core–shell nanostructures: emulsion-based syntheses and potential applications. Colloid Polym Sci 288(16):1503–1523

    Article  CAS  Google Scholar 

  11. Ivan Meléndez-Ortiz H, Bucio E (2009) Stimuli-sensitive behaviour of binary graft Co-polymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm in acidic and basic medium. Designed Monomers Polym 12(1):99–108

    Article  Google Scholar 

  12. Lapienis G (2009) Star-shaped polymers having PEO arms. Prog Polym Sci 34(9):852–892. doi:10.1016/j.progpolymsci.2009.04.006

    Article  CAS  Google Scholar 

  13. Li P, Xu R, Wang W, Li X, Xu Z, Yeung K, Chu P (2013) Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloid Surf B: Biointerfaces 101:251–255

    Article  CAS  Google Scholar 

  14. Ling Y, Lu M (2009) Thermo and pH dual responsive Poly (N-isopropylacrylamide-co-itaconic acid) hydrogels prepared in aqueous NaCl solutions and their characterization. J Polym Res 16(1):29–37

    Article  CAS  Google Scholar 

  15. Liu Y, Cao X, Luo M, Le X, Xu W (2009) Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J Colloid Interface Sci 329(2):244–252

    Article  CAS  Google Scholar 

  16. Manakker F, Vermonden T, Nostrum C, Hennink W (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10(12):3157–3175

    Article  Google Scholar 

  17. Matyjaszewski K, Miller PJ, Pyun J, Kickelbick G, Diamanti S (1999) Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules 32(20):6526–6535

    Article  CAS  Google Scholar 

  18. Ramkissoon-Ganorkar C, Vaudyš M, Kim SW (2000) Effect of ionic strength on the loading efficiency of model polypeptide/protein drugs in pH-/temperature-sensitive polymers. J Biomater Sci Polym Ed 11(1):45–54

    Article  CAS  Google Scholar 

  19. Rwei SP, Ku FH (2001) The dispersion of pigment slurries via incorporation with water-soluble sulfonate poly (ethylene- terephthalate). Colloid Polym Sci 279(3):274–278

    Article  CAS  Google Scholar 

  20. Way TF, Chen YT, Chen JJ, and Teng K, US patent application No. 2013/0172490 A1

  21. Zhang J, Ma P (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65(9):1215–1233

    Article  CAS  Google Scholar 

  22. Zhao C, Gao X, He P, Xiao C, Zhuang X, Chen X (2011) Facile synthesis of thermo- and pH-responsive biodegradable microgels. Colloid Polym Sci 289(4):447–451

    Article  CAS  Google Scholar 

  23. Zhao SP, Zhou F, Li LY (2012) pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release profiles. J Polym Res 19(9):9944

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 102-2218-E-027-015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syang-Peng Rwei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rwei, SP., Chuang, YY., Way, TF. et al. Preparation of thermo- and pH-responsive star copolymers via ATRP and its use in drug release application. Colloid Polym Sci 293, 493–503 (2015). https://doi.org/10.1007/s00396-014-3436-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3436-0

Keywords

Navigation