Skip to main content
Log in

Preparation of Au/TiO2 nanocomposite particles with high visible-light photocatalytic activity in inverse miniemulsions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Au/amorphous TiO2 nanocomposite particles with high visible-light photocatalytic activity were conveniently prepared in inverse miniemulsions. The materials were synthesized through a combination of a sol–gel process and in situ reduction of HAuCl4 by hydrazine to Au nanoparticles in the nanocomposite particles. The photocatalytic activity of the as-synthesized Au/amorphous TiO2 nanocomposite particles is much higher than that of the Au/anatase TiO2 and Au/rutile TiO2 nanocomposite particles prepared by calcination. Therefore, no further heat treatments are required to achieve visible-light photocatalytic active catalysts. The loading of Au in the nanocomposite particles could be conveniently tuned by varying the HAuCl4 loading in the dispersed phase of the inverse miniemulsions. Only a small amount of Au was required to achieve a high photocatalytic activity. The size, particle morphology, TiO2 phase, optical property, elemental content and distribution, and pore properties of the Au/TiO2 nanocomposite particles were systematically characterized by dynamic light scattering, transmission/scanning electron microscopy, X-ray diffraction, Raman spectroscopy, UV–vis spectroscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and N2 sorption measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  2. Li W, Wu ZX, Wang JX, Elzatahry AA, Zhao DY (2014) A perspective on mesoporous TiO2 materials. Chem Mater 26:287–298

    Article  CAS  Google Scholar 

  3. Liu ZW, Hou WB, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11:1111–1116

    Article  CAS  Google Scholar 

  4. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  Google Scholar 

  5. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  6. Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  CAS  Google Scholar 

  7. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  8. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2013) Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal 3:79–85

    Article  CAS  Google Scholar 

  9. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  10. Wang XD, Mitchell DRG, Prince K, Atanacio AJ, Caruso RA (2008) Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:3917–3926

    Article  CAS  Google Scholar 

  11. Khan MM, Ansari SA, Amal MI, Lee J, Cho MH (2013) Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5:4427–4435

    Article  CAS  Google Scholar 

  12. Wang P, Huang BB, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825

    Article  CAS  Google Scholar 

  13. Hou WB, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619

    Article  CAS  Google Scholar 

  14. Zielińska-Jureka A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A (2011) Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl Catal B 101:504–514

    Article  Google Scholar 

  15. Tanaka A, Ogino A, Iwaki M, Hashimoto K, Ohnuma A, Amano F, Ohtani B, Kominami H (2012) Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir 28:13105–13111

    Article  CAS  Google Scholar 

  16. Kowalska E, Mahaney OOP, Abe R, Ohtani B (2010) Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys Chem Chem Phys 12:2344–2355

    Article  CAS  Google Scholar 

  17. Zhang Q, Lima DQ, Lee I, Zaera F, Chi MF, Yin YD (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed 50:7088–7092

    Article  CAS  Google Scholar 

  18. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48:4488–4507

    Article  CAS  Google Scholar 

  19. Cao ZH, Ziener U (2013) Synthesis of nanostructured materials in inverse miniemulsions and their applications. Nanoscale 5:10093–10107

    Article  CAS  Google Scholar 

  20. Hamberger A, Ziener U, Landfester K (2013) Encapsulation of in situ nanoprecipitated inorganic materials in confined geometries into a polymer shell using inverse miniemulsion. Macromol Chem Phys 214:691–699

    Article  CAS  Google Scholar 

  21. Cao ZH, Dong LZ, Li L, Shang Y, Qi DM, Lv Q, Shan GR, Ziener U, Landfester K (2012) Preparation of mesoporous submicrometer silica capsules via an interfacial sol–gel process in inverse miniemulsion. Langmuir 28:7023–7032

    Article  CAS  Google Scholar 

  22. Cao ZH, Yang L, Ye QL, Cui QM, Qi DM, Ziener U (2013) Transition-metal salt-containing silica nanocapsules elaborated via salt-induced interfacial deposition in inverse miniemulsions as precursor to functional hollow silica particles. Langmuir 29:6509–6518

    Article  CAS  Google Scholar 

  23. Schiller R, Weiss CK, Geserick J, Huesing N, Landfester K (2009) Synthesis of mesoporous silica particles and capsules by miniemulsion technique. Chem Mater 21:5088–5098

    Article  CAS  Google Scholar 

  24. Rossmanith R, Weiss CK, Geserick J, Huesing N, Hoermann U, Kaiser U, Landfester K (2008) Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chem Mater 20:5768–5780

    Article  CAS  Google Scholar 

  25. Schiller R, Weiss CK, Landfester K (2010) Phase stability and photocatalytic activity of Zr-doped anatase synthesized in miniemulsion. Nanotechnology 21:405603

    Article  Google Scholar 

  26. Nabih N, Schiller R, Lieberwirth I, Kockrick E, Frind R, Kaskel S, Weiss CK, Landfester K (2011) Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology 22:135606

    Article  Google Scholar 

  27. Cao ZH, Wang Z, Herrmann C, Ziener U, Landfester K (2010) Narrowly size-distributed cobalt salt containing poly(2-hydroxyethyl methacrylate) particles by inverse miniemulsion. Langmuir 26:7054–7061

    Article  CAS  Google Scholar 

  28. Cao ZH, Wang Z, Herrmann C, Landfester K, Ziener U (2010) Synthesis of narrowly size-distributed metal salt/poly(HEMA) hybrid particles in inverse miniemulsion: versatility and mechanism. Langmuir 26:18008–18015

    Article  CAS  Google Scholar 

  29. Cao ZH, Walter C, Landfester K, Wu ZY, Ziener U (2011) Synthesis of silver/poly(2-hydroxyethyl methacrylate) particles via a combination of inverse miniemulsion and silver ion reduction in a "nanoreactor". Langmuir 27:9849–9859

    Article  CAS  Google Scholar 

  30. Fuchs AV, Walter C, Landfester K, Ziener U (2012) Biomimetic silver-containing colloids of poly(2-methacryloyloxyethyl phosphorylcholine) and their film-formation properties. Langmuir 28:4974–4983

    Article  CAS  Google Scholar 

  31. Heutz NA, Dolcet P, Birkner A, Casarin M, Merz K, Gialanella S, Gross S (2013) Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion. Nanoscale 5:10534–10541

    Article  CAS  Google Scholar 

  32. Schlaad H, Kukula H, Rudloff J, Below I (2001) Synthesis of α, ω-heterobifunctional poly(ethylene glycol)s by metal-free anionic ring-opening polymerization. Macromolecules 34:4302–4304

    Article  CAS  Google Scholar 

  33. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12:4329–4335

    Article  Google Scholar 

  34. Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin YD (2012) Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv Funct Mater 22:166–174

    Article  CAS  Google Scholar 

  35. Cao ZH, Yang L, Yan YJ, Shang Y, Ye QL, Qi DM, Ziener U, Shan GR, Landfester K (2013) Fabrication of nanogel core-silica shell and hollow silica nanoparticles via an interfacial sol–gel process triggered by transition-metal salt in inverse systems. J Colloid Interface Sci 406:139–147

    Article  CAS  Google Scholar 

  36. Seh ZW, Liu SH, Low M, Zhang SY, Liu ZL, Mlayah A, Han MY (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314

    Article  CAS  Google Scholar 

  37. Zanatta AR, Chambouleyron I (1996) Absorption edge, band tails, and disorder of amorphous semiconductors. Phys Rev B 53:3833–3836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Natural Scientific Foundation of China (NNSFC) project (51003023) and open Foundation of Zhejiang Provincial Top Key Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (YR2012007), Zhejiang Province’s Xinmiao Talent Plan (2013R421041), and National Undergraduate Training Programs for Innovation and Entrepreneurship of China (201310346013) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihai Cao or Dongming Qi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Yang, L., Chen, H. et al. Preparation of Au/TiO2 nanocomposite particles with high visible-light photocatalytic activity in inverse miniemulsions. Colloid Polym Sci 293, 277–288 (2015). https://doi.org/10.1007/s00396-014-3412-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3412-8

Keywords

Navigation