Skip to main content
Log in

What makes AOT reverse micelles spherical?

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

It is known that sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles are spherical over a wide range of water-to-surfactant molar ratios. This contradicts the traditional concept of preferred curvature. In actual fact, this concept does not apply to the AOT monolayer because its free energy is almost a linear function of the mean curvature. To correctly predict the shape of AOT reverse micelles, it is necessary to take into account not only the curvature free energy but also the disjoining pressure arising primarily from the overlapping of the electrical double layers at the opposite sides of the water core. Based on these considerations, we develop a model to calculate the free energy of AOT reverse microemulsion. This model allows us to explain the sphericity and to calculate various thermodynamic properties: the enthalpy of solubilization, chemical potentials, polydispersity, and the phase diagrams. All results are in qualitative agreement with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ivanchikhina AV, Tovstun SA, Razumov VF (2013) Influence of surfactant polydispersity on the structure of polyoxyethylene (5) nonylphenyl ether/cyclohexane/water reverse microemulsions. J Colloid Interface Sci 395:127–134

    Article  CAS  Google Scholar 

  2. Wennerström H (1996) Thermodynamic theory of surfactant phases. Curr Opin Colloid Interface Sci 1:370–375

    Article  Google Scholar 

  3. Strey R (1996) Phase behavior and interfacial curvature in water-oil-surfactant systems. Curr Opin Colloid Interface Sci 1:402–410

    Article  CAS  Google Scholar 

  4. Hellweg T (2002) Phase structures of microemulsions. Curr Opin Colloid Interface Sci 7:50–56

    Article  CAS  Google Scholar 

  5. Gradzielski M (2008) Recent developments in the characterisation of microemulsions. Curr Opin Colloid Interface Sci 13:263–269

    Article  CAS  Google Scholar 

  6. Sjöblom J, Lindberg R, Friberg SE (1996) Microemulsions—phase equilibria characterization, structures, applications and chemical reactions. Adv Colloid Interface Sci 65:125–287

    Article  Google Scholar 

  7. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C J Biosci 28:693–703

    CAS  Google Scholar 

  8. Sicoli F, Langevin D, Lee LT (1993) Surfactant film bending elasticity in microemulsions: structure and droplet polydispersity. J Chem Phys 99:4759–4765

    Article  CAS  Google Scholar 

  9. Borkovec M, Eicke HF, Ricka J (1989) Polydispersity in dilute microemulsions: a consequence of the monomer-droplet equilibrium. J Colloid Interface Sci 131:366–381

    Article  CAS  Google Scholar 

  10. Borkovec M (1989) From micelles to microemulsion droplets: size distributions, shape fluctuations, and interfacial tensions. J Chem Phys 91:6268–6281

    Article  CAS  Google Scholar 

  11. Eriksson JC, Ljunggren S (1990) The multiple chemical equilibrium approach to the theory of droplet microemulsions. Prog Colloid Polym Sci 81:41–53

    Article  CAS  Google Scholar 

  12. Eriksson JC, Ljunggren S (1995) Thermodynamic evaluation of the polydispersity of droplet microemulsions. Langmuir 11:1145–1153

    Article  CAS  Google Scholar 

  13. Eriksson JC, Ljunggren S, Kegel WK, Lekkerkerker HNW (2001) Entropy and droplet size distributions of winsor I and II microemulsions. Colloids Surf A 183:347–360

    Article  Google Scholar 

  14. Arleth L, Pedersen JS (2001) Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering. Phys Rev E 63:061406 (18 pages)

  15. Kitchens CL, Bossev DP, Roberts CB (2006) Solvent effects on AOT reverse micelles in liquid and compressed alkanes investigated by neutron spin-echo spectroscopy. J Phys Chem B 110:20392–20400

    Article  CAS  Google Scholar 

  16. Kegel WK, Bodnar I, Lekkerkerker HNW (1995) Bending elastic moduli of the surfactant film and properties of a winsor II microemulsion system. J Phys Chem 99:3272–3281

    Article  CAS  Google Scholar 

  17. Borkovec M (1992) Phenomenological theories of globular microemulsions. Adv Colloid Interface Sci 37:195–217

    Article  CAS  Google Scholar 

  18. Szleifer I, Kramer D, Ben-Shaul A, Gelbart WM, Safran SA (1990) Molecular theory of curvature elasticity in surfactant films. J Chem Phys 92:6800–6817

    Article  CAS  Google Scholar 

  19. Fogden A, Hyde ST, Lundberg G (1991) Bending energy of surfactant films. J Chem Soc Faraday Trans 87:949–955

    Article  CAS  Google Scholar 

  20. Lekkerkerker HNW (1990) The electric contribution to the curvature elastic moduli of charged fluid interfaces. Physica A 167:384–394

    Article  Google Scholar 

  21. Duplantier B, Goldstein RE, Romero-Rochín V, Pesci AI (1990) Geometrical and topological aspects of electric double layers near curved surfaces. Phys Rev Lett 65:508–511

    Article  CAS  Google Scholar 

  22. Daicic J, Fogden A, Carlsson I, Wennerström H, Jönsson B (1996) Bending of ionic surfactant monolayers. Phys Rev E 54:3984–3998

    Article  CAS  Google Scholar 

  23. Ennis J (1992) Spontaneous curvature of surfactant films. J Chem Phys 97:663–678

    Article  CAS  Google Scholar 

  24. Fogden A, Mitchell DJ, Ninham BW (1990) Undulations of charged membranes. Langmuir 6:159–162

    Article  CAS  Google Scholar 

  25. Winterhalter M, Helfrich W (1988) Effect of surface charge on the curvature elasticity of membranes. J Phys Chem 92:6865–6867

    Article  CAS  Google Scholar 

  26. Mitchell DJ, Ninham BW (1989) Curvature elasticity of charged membranes. Langmuir 5:1121–1123

    Article  CAS  Google Scholar 

  27. Higgs PG, Joanny JF (1990) Enhanced membrane rigidity in charged lamellar phases. J Phys Fr 51:2307–2320

    Article  Google Scholar 

  28. Harden JL, Marques C, Joanny JF, Andelman D (1992) Membrane curvature elasticity in weakly charged lamellar phases. Langmuir 8:1170–1175

    Article  CAS  Google Scholar 

  29. Fogden A, Daicic J, Mitchell DJ, Ninham BW (1996) Electrostatic rigidity of charged membranes in systems without added salt. Physica A 234:167–188

    Article  CAS  Google Scholar 

  30. Linse P, Gunnarsson G, Jönsson B (1982) Electrostatic interactions in micellar solutions. a comparison between Monte Carlo simulations and solutions of the Poisson–Boltzmann equation. J Phys Chem 86:413–421

    Article  CAS  Google Scholar 

  31. Guldrand L, Jönsson B, Wennerström H, Linse P (1984) Electrical double layer forces. A Monte Carlo study J Chem Phys 80:2221–2228

    Google Scholar 

  32. Wennerström H, Khan A, Lindman B (1991) Ionic surfactants with divalent counterions. Adv Colloid Interface Sci 34:433–449

    Article  Google Scholar 

  33. Israelachvili JN (1998) Intermolecular and surface forces. Academic Press

  34. Jönsson B, Wennerström H (1981) Thermodynamics of ionic amphiphile–water systems. J Colloid Interface Sci 80:482–496

    Article  Google Scholar 

  35. Nevidimov AV, Razumov VF (2009) Molecular dynamics simulations of AOT reverse micelles’ self-assembly. Mol Phys 107:2169–2180

    Article  CAS  Google Scholar 

  36. Nevidimov AV, Razumov VF (2013) Molecular dynamics simulation of reverse micelles: a search for the most efficient strategy. Colloid J 75:191–219

    Article  CAS  Google Scholar 

  37. Kotlarchyk M, Chen SH, Huang JS (1982) Temperature dependence of size and polydispersity in a three-component microemulsion by small-angle neutron scattering. J Phys Chem 86:3273–3276

    Article  CAS  Google Scholar 

  38. Amararene A, Gindre M, Le Huérou JY, Urbach W, Valdez D, Waks M (2000) Adiabatic compressibility of AOT [sodium bis(2-ethylhexyl)sulfosuccinate] reverse micelles: analysis of a simple model based on micellar size and volumetric measurements. Phys Rev E 61:682–689

    Article  CAS  Google Scholar 

  39. Nave S, Eastoe J, Heenan RK, Steytler D, Grillo I (2000) What is so special about aerosol-OT? 2. Microemulsion Syst Langmuir 16:8741–8748

    Article  CAS  Google Scholar 

  40. Tovstun SA, Razumov VF (2010) On the composition fluctuations of reverse micelles. J Colloid Interface Sci 351:485–492

    Article  CAS  Google Scholar 

  41. CRC Handbook of Chemistry and Physics (2003–2004) ed. by D.R. Lide, 84th ed.

  42. Szleifer I, Ben-Shaul A, Gelbart WM (1990) Chain packing statistics and thermodynamics of amphiphile monolayers. J Phys Chem 94:5081–5089

    Article  CAS  Google Scholar 

  43. Donahue DJ, Bartell FE (1952) The boundary tension at water-organic liquid interfaces. J Phys Chem 56:480–484

    Article  CAS  Google Scholar 

  44. Kunieda H, Shinoda K (1979) Solution behavior of aerosol OT/water/oil system. J Colloid Interface Sci 70:577–583

    Article  CAS  Google Scholar 

  45. Tamamushi B, Watanabe N (1980) The formation of molecular aggregation structures in ternary system: aerosol OT/water/iso-octane. Colloid Polym Sci 258:174–178

    Article  CAS  Google Scholar 

  46. Hall AC, Tekle E, Schelly ZA (1989) Flow birefringence in the L2 phase of the aerosol OT/isooctane/water system. Langmuir 5:1263–1265

    Article  CAS  Google Scholar 

  47. Fletcher PDI, Howe AM, Robinson BH (1987) The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion. J Chem Soc Faraday Trans 1(83):985–1006

    Article  Google Scholar 

  48. Sager WFC (1998) Systematic study on the influence of impurities on the phase behavior of sodium bis(2-ethylhexyl) sulfosuccinate microemulsions. Langmuir 14:6385–6395

    Article  CAS  Google Scholar 

  49. Biais J, Barthe M, Bourrel M, Clin B, Lalanne P (1986) Salt partitioning in winsor type II systems. J Colloid Interface Sci 109:576–585

    Article  CAS  Google Scholar 

  50. Van Aken GA, Overbeek JTG, De Bruijn PL, Lekkerkerker HNW (1993) Partitioning of salt in winsor II microemulsion systems with an anionic surfactant and the consequences for the phase behavior. J Colloid Interface Sci 157:235–243

    Article  Google Scholar 

  51. Van Nieuwkoop J, Snoei G (1985) Phase diagrams and composition analyses in the system sodium dodecyl sulfate/butanol/water/sodium chloride/heptane. J Colloid Interface Sci 103:400–416

    Article  Google Scholar 

  52. Ueda M, Schelly ZA (1988) Mean aggregation number and water vapor pressure of AOT reverse micellar systems determined by controlled partial pressure–vapor pressure osmometry (CPP-VPO). Langmuir 4:653–655

    Article  CAS  Google Scholar 

  53. Chew CH, Wong MK (1991) Relative water vapor pressure of water-in-oil microemulsions by headspace gas chromatographic analysis. J Dispers Sci Technol 21:495–501

    Article  Google Scholar 

  54. Kubik R, Eicke HF (1982) On the activity of water and the concept of the interfacial free energy in W/O-microemulsions. Helv Chim Acta 65:170–177

    Article  CAS  Google Scholar 

  55. Aveyard R, Haydon DA (1965) Thermodynamic properties of aliphatic hydrocarbon/water interfaces. Trans Faraday Soc 61:2255–2261

    Article  CAS  Google Scholar 

  56. Zeppieri S, Rodríguez J, López de Ramos AL (2001) Interfacial tension of alkane + water systems. J Chem Eng Data 46:1086–1088

    Article  CAS  Google Scholar 

  57. Rouviere J, Couret JM, Lindheimer A, Lindheimer M, Brun B (1976) Structure des agrégats inverses d’AOT. II. Effets de sel sur les micelles inverses. J Chim Phys Phys Chim Biol 76:297–301

    Google Scholar 

  58. D’Aprano A, Lizzio A, Turco Liveri V (1987) Enthalpies of solution and volumes of water in reversed AOT micelles. J Phys Chem 91:4749–4751

    Article  Google Scholar 

  59. Kon-No K, Kitahara A (1971) Solubility behavior of water in nonaqueous solutions of Oil-soluble surfactants: effect of molecular structure of surfactants and solvents. J Colloid Interface Sci 37:469–475

    Article  CAS  Google Scholar 

  60. Kon-No K, Kitahara A (1972) Secondary solubilization of electrolytes by di-(2-ethylhexyl) sodium sulfosuccinate in cyclohexane solutions. J Colloid Interface Sci 41:47–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant Nos. 12-03-31496 and 13-03-00681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Tovstun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovstun, S.A., Razumov, V.F. What makes AOT reverse micelles spherical?. Colloid Polym Sci 293, 165–176 (2015). https://doi.org/10.1007/s00396-014-3405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3405-7

Keywords

Navigation